Today's antennas have to operate in multiple resonant frequencies to satisfy the need of recent advances in communication technologies.This paper presents split ring resonator based triangular multiband antenna wh...Today's antennas have to operate in multiple resonant frequencies to satisfy the need of recent advances in communication technologies.This paper presents split ring resonator based triangular multiband antenna whose antenna performance is enhanced with the help of frequency selective surfaces(FSSs).The antenna has multiple resonances at S,C,and X bands.An array of 4×3 crisscross-shaped unit cells are arranged to form the FSS layer.The antenna is fed with a microstrip line feeding technique.The proposed antenna operates at 3.5 GHz,4.1 GHz,5.5GHz,9.4GHz,and 9.8 GHz with a better return loss and gain.Simulated and measured results yield a good match.展开更多
We present a novel algorithm for adaptive triangular mesh coarsening. The algorithm has two stages. First, the input triangular mesh is refined by iteratively applying the adaptive subdivision operator that performs a...We present a novel algorithm for adaptive triangular mesh coarsening. The algorithm has two stages. First, the input triangular mesh is refined by iteratively applying the adaptive subdivision operator that performs a so-called red-green split. Second, the refined mesh is simplified by a clustering algorithm based on centroidal Voronoi tessellations (CVTs). The accuracy and good quality of the output triangular mesh are achieved by combining adaptive subdivision and the CVTs technique. Test results showed the mesh coarsening scheme to be robust and effective. Examples are shown that validate the method.展开更多
文摘Today's antennas have to operate in multiple resonant frequencies to satisfy the need of recent advances in communication technologies.This paper presents split ring resonator based triangular multiband antenna whose antenna performance is enhanced with the help of frequency selective surfaces(FSSs).The antenna has multiple resonances at S,C,and X bands.An array of 4×3 crisscross-shaped unit cells are arranged to form the FSS layer.The antenna is fed with a microstrip line feeding technique.The proposed antenna operates at 3.5 GHz,4.1 GHz,5.5GHz,9.4GHz,and 9.8 GHz with a better return loss and gain.Simulated and measured results yield a good match.
基金supported by the National Natural Science Foundation of China (No. 60773179)the National Basic Research Program (973) of China (No. 2004CB318000)
文摘We present a novel algorithm for adaptive triangular mesh coarsening. The algorithm has two stages. First, the input triangular mesh is refined by iteratively applying the adaptive subdivision operator that performs a so-called red-green split. Second, the refined mesh is simplified by a clustering algorithm based on centroidal Voronoi tessellations (CVTs). The accuracy and good quality of the output triangular mesh are achieved by combining adaptive subdivision and the CVTs technique. Test results showed the mesh coarsening scheme to be robust and effective. Examples are shown that validate the method.