期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
复Contourlet域TS-MRF模型的医学CT影像分割 被引量:2
1
作者 夏平 彭程 +1 位作者 施宇 雷帮军 《国外电子测量技术》 北大核心 2022年第10期155-163,共9页
针对CT影像存在伪影、分割困难的问题,提出了复Contourlet域树结构马尔可夫随机场(tree-structured Markov random filed, TS-MRF)的医学CT图像分割算法。采用复Contourlet分析提取CT图像各尺度中的特征信息,特征信息的相关性以其对应... 针对CT影像存在伪影、分割困难的问题,提出了复Contourlet域树结构马尔可夫随机场(tree-structured Markov random filed, TS-MRF)的医学CT图像分割算法。采用复Contourlet分析提取CT图像各尺度中的特征信息,特征信息的相关性以其对应标记的相关性表征;其次,相邻尺度间标记的相关性通过构建一阶Markov模型建立联系;尺度内通过构建TS-MRF模型,采用父节点标记对子节点标记的约束以及子节点邻域间标记的相关性描述尺度内节点标记的局部相关性;CT图像特征场通过在每一尺度内构建同标记的高斯模型表征;最后,图像分割的结果通过极大化特征场与标记场联合分布来实现。实验结果表明,相对于空域TS-MRF、小波域TS-MRF、空域马尔科夫随机场(Markov random filed, MRF)、复小波域MRF等4种算法,复域(ontourle, TS-MRF)算法反映分割区域一致性的概率Rand指数(probabilistic rand index, PRI)提高0.091 3以上;同区域分割误差指标全局一致性误差指数(global consistency error, GCE)降低了0.002 8以上;分割边缘连续性指标边界偏移误差指数(boundary displacement error, BDE)降低0.617 9以上;分割后信息丢失指标信息变化指数(variation of information, VoI)降低了0.889 6以上。因此,算法对医学CT图像分割具有较好的区域一致性、分割精度和鲁棒性。 展开更多
关键词 CT图像分割 复Contourlet分析 ts-mrf模型 POTts模型 标记场
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部