This paper considers the multi-symplectic formulations of the generalized fifth-order KdV equation in Hamiltonian space. Recurring to the midpoint rule, it presents an implicit multi-symplectic scheme with discrete mu...This paper considers the multi-symplectic formulations of the generalized fifth-order KdV equation in Hamiltonian space. Recurring to the midpoint rule, it presents an implicit multi-symplectic scheme with discrete multi-symplectic conservation law to solve the partial differential equations which are derived from the generalized fifth-order KdV equation numerically. The results of the numerical experiments show that this multi-symplectic algorithm is good in accuracy and its long-time numerical behaviour is also perfect.展开更多
This paper research on the pointwise behavior of perturbations from a viscous shock solution to a scalar viscous conservation law by introducing an approximate Green’s function. The authors obtain not only the pointw...This paper research on the pointwise behavior of perturbations from a viscous shock solution to a scalar viscous conservation law by introducing an approximate Green’s function. The authors obtain not only the pointwise decay of the perturbation and but also the high derivative of it. Stability in anyL(p≥1) norm is a direct consequence.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10572119, 10772147 and 10632030)the Doctoral Program Foundation of Education Ministry of China (Grant No 20070699028)+1 种基金the National Natural Science Foundation of Shaanxi Province of China (Grant No 2006A07)the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment
文摘This paper considers the multi-symplectic formulations of the generalized fifth-order KdV equation in Hamiltonian space. Recurring to the midpoint rule, it presents an implicit multi-symplectic scheme with discrete multi-symplectic conservation law to solve the partial differential equations which are derived from the generalized fifth-order KdV equation numerically. The results of the numerical experiments show that this multi-symplectic algorithm is good in accuracy and its long-time numerical behaviour is also perfect.
基金the National Natural Science Foundation of China(10131050)
文摘This paper research on the pointwise behavior of perturbations from a viscous shock solution to a scalar viscous conservation law by introducing an approximate Green’s function. The authors obtain not only the pointwise decay of the perturbation and but also the high derivative of it. Stability in anyL(p≥1) norm is a direct consequence.