In this paper, the improved version of the meshless singular boundary method (ISBM) is developed for analyzing the hydrodynamic performance of bottom-standing submerged breakwaters in regular normally incident waves. ...In this paper, the improved version of the meshless singular boundary method (ISBM) is developed for analyzing the hydrodynamic performance of bottom-standing submerged breakwaters in regular normally incident waves. Both the single and dual prismatic breakwaters of rectangular and trapezoidal forms are examined. Only the impermeable breakwaters are considered in this study. The physical problem is cast in terms of the Laplace equation governing an irrotational flow and incompressible fluid motion with the appropriate mixed-type boundary conditions, and it is solved numerically using the ISBM. The numerical results are presented in terms of the hydrodynamic quantities of reflection and transmission coefficients. The values are first validated against the data of previous studies, computed, and discussed for a variety of structural conditions, including the height, width, and spacing of breakwater submergence. An excellent agreement is observed between the ISBM results and those of other methods. The breakwater width is found to feature marginal effects compared with the height. The present method is shown to accurately predict the resonant conditions at which the maximum reflection and transmission occur. The trapezoidal breakwaters are found to generally present a wide spectrum of reflections, suggesting that they would function better than the rectangular breakwaters. The dual breakwater systems are confirmed to perform much better than single structures.展开更多
In this paper,we define a new idea of trapezoidal neutrosophic cubic hesitant fuzzy number based on migraine diseases.We define and the migraine diseases on trapezoidal neutrosophic cubic hesitant fuzzy number and ope...In this paper,we define a new idea of trapezoidal neutrosophic cubic hesitant fuzzy number based on migraine diseases.We define and the migraine diseases on trapezoidal neutrosophic cubic hesitant fuzzy number and operational laws of trapezoidal neutrosophic cubic hesitant fuzzy number and hamming distance of TrNCHFNs.The new concept of trapezoidal neutrosophic cubic hesitant fuzzy TOPSIS method is introduced.Furthermore,we extend MCDM method based on the trapezoidal neutrosophic cubic hesitant fuzzy TOPSIS method.Finally,an illustrative example is given to verify and demonstrate the practicality and effectiveness of the proposed method.展开更多
To get the scattering loss of the trapezoidal core waveguide,a new analysis model is presented based on the perturbation equivalent method and modified effective-index method.Firstly,the trapezoidal core waveguide is ...To get the scattering loss of the trapezoidal core waveguide,a new analysis model is presented based on the perturbation equivalent method and modified effective-index method.Firstly,the trapezoidal core waveguide is successfully equivalent to the rectangular one with both restricting the same optical field energy by adopting the perturbation method,Then,the equivalent rectangular core waveguide is decomposed into two slab waveguides by employing the modified effective-index method,The trapezoidal core waveguide scattering theory model is established based on the slab waveguide scattering theory.With the sidewalls surface roughness in the range from 0 to 100 nm in the single model trapezodial core waveguide,optical simulation shows excellent agreement with the results from the scattering loss model presented.The relationship between the dimension and side-wall roughness with the scattering loss can be determined in the trapezoidal core waveguide by the scattering loss model.展开更多
基金supported by the Direction Général des Enseignements et de la Formation Supérieure of Algeria under Grant CNEPRU number G0301920140029
文摘In this paper, the improved version of the meshless singular boundary method (ISBM) is developed for analyzing the hydrodynamic performance of bottom-standing submerged breakwaters in regular normally incident waves. Both the single and dual prismatic breakwaters of rectangular and trapezoidal forms are examined. Only the impermeable breakwaters are considered in this study. The physical problem is cast in terms of the Laplace equation governing an irrotational flow and incompressible fluid motion with the appropriate mixed-type boundary conditions, and it is solved numerically using the ISBM. The numerical results are presented in terms of the hydrodynamic quantities of reflection and transmission coefficients. The values are first validated against the data of previous studies, computed, and discussed for a variety of structural conditions, including the height, width, and spacing of breakwater submergence. An excellent agreement is observed between the ISBM results and those of other methods. The breakwater width is found to feature marginal effects compared with the height. The present method is shown to accurately predict the resonant conditions at which the maximum reflection and transmission occur. The trapezoidal breakwaters are found to generally present a wide spectrum of reflections, suggesting that they would function better than the rectangular breakwaters. The dual breakwater systems are confirmed to perform much better than single structures.
基金The second and third authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant Nos.R.G.P1/76/40 and R.G.P2/52/40.
文摘In this paper,we define a new idea of trapezoidal neutrosophic cubic hesitant fuzzy number based on migraine diseases.We define and the migraine diseases on trapezoidal neutrosophic cubic hesitant fuzzy number and operational laws of trapezoidal neutrosophic cubic hesitant fuzzy number and hamming distance of TrNCHFNs.The new concept of trapezoidal neutrosophic cubic hesitant fuzzy TOPSIS method is introduced.Furthermore,we extend MCDM method based on the trapezoidal neutrosophic cubic hesitant fuzzy TOPSIS method.Finally,an illustrative example is given to verify and demonstrate the practicality and effectiveness of the proposed method.
基金Project(50735007) supported by the National Natural Science Foundation of ChinaProject(2010ZX04001-151) supported by Important National Science & Technology Specific Program of China
文摘To get the scattering loss of the trapezoidal core waveguide,a new analysis model is presented based on the perturbation equivalent method and modified effective-index method.Firstly,the trapezoidal core waveguide is successfully equivalent to the rectangular one with both restricting the same optical field energy by adopting the perturbation method,Then,the equivalent rectangular core waveguide is decomposed into two slab waveguides by employing the modified effective-index method,The trapezoidal core waveguide scattering theory model is established based on the slab waveguide scattering theory.With the sidewalls surface roughness in the range from 0 to 100 nm in the single model trapezodial core waveguide,optical simulation shows excellent agreement with the results from the scattering loss model presented.The relationship between the dimension and side-wall roughness with the scattering loss can be determined in the trapezoidal core waveguide by the scattering loss model.