The stability issue has been acknowledged as the bottleneck in the practical application of perovskite photovoltaics,while the stabilized interface between the perovskites and charge transport layers dominates their s...The stability issue has been acknowledged as the bottleneck in the practical application of perovskite photovoltaics,while the stabilized interface between the perovskites and charge transport layers dominates their stability performance under different stresses.Here,we developed a high-performance sulfurized zinc-titanium mixed oxide(ZTO-S)electron transport layer(ETL)to fabricate large-area efficient and long-term 85℃/85%RH stable perovskite solar modules.The scalably prepared ZTO-S using the facile spray coating method demonstrates excellent electron mobility close to that of Zn O,in addition to promoting the uniform crystallization of perovskite film across the entire module via the interaction between surface S and Pb^(2+).Furthermore,this novel coordination stabilized the interface and reduced the interfacial non-radiative recombination defects within the devices,yielding an efficient and stable performance for the modules.High efficiency of 21.73%and 17.50%was achieved for blade-coated 36 cm^(2)and 100 cm^(2)perovskite solar modules,respectively.In addition,the encapsulated module(36 cm^(2))shows an attractive humidity and heat stability(85℃/85%RH)performance with a maintained 93.5%of the initial PCE over 1000 h.展开更多
The primary goal of crowd evacuation in urban underground passages or subways is to evacuate as many evacuees as possible to safe areas in the shortest time when emergency events occur. This paper chooses the undergro...The primary goal of crowd evacuation in urban underground passages or subways is to evacuate as many evacuees as possible to safe areas in the shortest time when emergency events occur. This paper chooses the underground passages of one metro in Istanbul, Turkey as research object, and uses a study method which combines by sites investigation, field test and computer simulation of the creating new software. It is called Building Evacuate Module software. We present a depth analysis of the related factors which include the number and width of passage, channelization setting and the number of pedestrians with the evacuation time. And the influential effect of public opinion is explained by using big data technology. In addition, pedestrians evacuation condition are recorded in three evacuation period, the morning peak, common and evening peak by the observation and statistic obtained with video, and build the model to simulate the change of evacuation time with pedestrians. So it reveals when the number of pedestrians reaches to more than 200, evacuation time increases significantly and the field experiment and simulation condition are consistent basically.展开更多
Efficient flexible perovskite solar cells and modules were developed using a combination of SnO2 and mesoporous-TiO2 as a fully solution-processed electron transport layer (ETL). Cells using such ETLs delivered a ma...Efficient flexible perovskite solar cells and modules were developed using a combination of SnO2 and mesoporous-TiO2 as a fully solution-processed electron transport layer (ETL). Cells using such ETLs delivered a maximum power conversion efficiency (PCE) of 14.8%, which was 30% higher than the PCE of cells with only SnO2 as the ETL. The presence of a mesoporous TiO2 scaffold layer over SnO2 led to higher rectification ratios, lower series resistances, and higher shunt resistances. The cells were also evaluated under 200 and 400 lx artificial indoor illumination and found to deliver maximum power densities of 9.77 μW/cm^2 (estimated PCE of 12.8%) and 19.2 μW/cm^2 (estimated PCE of 13.3%), respectively, representing the highest values among flexible photovoltaic technologies reported so far. Furthermore, for the first time, a fully laser-patterned flexible perovskite module was fabricated using a complete three-step laser scribing procedure (P1, P2, P3) with a PCE of 8.8% over an active area of 12 cm^2 under an illumination of 1 sun.展开更多
基金financially supported by the National Key R&D Program of China(2021YFB3401604)the Natural Science Foundation of Jiangxi Province(20202ACB214008)+3 种基金the Science and Technology Programs of Fujian Province(2022H0005)the Key Scientific and Technological Program of Xiamen(3502Z20211002)the Open Fund of the State Key Laboratory of Integrated Optoelectronics(IOSKL2020KF12)the Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(RD2020020101)。
文摘The stability issue has been acknowledged as the bottleneck in the practical application of perovskite photovoltaics,while the stabilized interface between the perovskites and charge transport layers dominates their stability performance under different stresses.Here,we developed a high-performance sulfurized zinc-titanium mixed oxide(ZTO-S)electron transport layer(ETL)to fabricate large-area efficient and long-term 85℃/85%RH stable perovskite solar modules.The scalably prepared ZTO-S using the facile spray coating method demonstrates excellent electron mobility close to that of Zn O,in addition to promoting the uniform crystallization of perovskite film across the entire module via the interaction between surface S and Pb^(2+).Furthermore,this novel coordination stabilized the interface and reduced the interfacial non-radiative recombination defects within the devices,yielding an efficient and stable performance for the modules.High efficiency of 21.73%and 17.50%was achieved for blade-coated 36 cm^(2)and 100 cm^(2)perovskite solar modules,respectively.In addition,the encapsulated module(36 cm^(2))shows an attractive humidity and heat stability(85℃/85%RH)performance with a maintained 93.5%of the initial PCE over 1000 h.
基金The authors would like to acknowledge the Suleyman Demirel University Scientific Research Project,which collectively funded this project.
文摘The primary goal of crowd evacuation in urban underground passages or subways is to evacuate as many evacuees as possible to safe areas in the shortest time when emergency events occur. This paper chooses the underground passages of one metro in Istanbul, Turkey as research object, and uses a study method which combines by sites investigation, field test and computer simulation of the creating new software. It is called Building Evacuate Module software. We present a depth analysis of the related factors which include the number and width of passage, channelization setting and the number of pedestrians with the evacuation time. And the influential effect of public opinion is explained by using big data technology. In addition, pedestrians evacuation condition are recorded in three evacuation period, the morning peak, common and evening peak by the observation and statistic obtained with video, and build the model to simulate the change of evacuation time with pedestrians. So it reveals when the number of pedestrians reaches to more than 200, evacuation time increases significantly and the field experiment and simulation condition are consistent basically.
文摘Efficient flexible perovskite solar cells and modules were developed using a combination of SnO2 and mesoporous-TiO2 as a fully solution-processed electron transport layer (ETL). Cells using such ETLs delivered a maximum power conversion efficiency (PCE) of 14.8%, which was 30% higher than the PCE of cells with only SnO2 as the ETL. The presence of a mesoporous TiO2 scaffold layer over SnO2 led to higher rectification ratios, lower series resistances, and higher shunt resistances. The cells were also evaluated under 200 and 400 lx artificial indoor illumination and found to deliver maximum power densities of 9.77 μW/cm^2 (estimated PCE of 12.8%) and 19.2 μW/cm^2 (estimated PCE of 13.3%), respectively, representing the highest values among flexible photovoltaic technologies reported so far. Furthermore, for the first time, a fully laser-patterned flexible perovskite module was fabricated using a complete three-step laser scribing procedure (P1, P2, P3) with a PCE of 8.8% over an active area of 12 cm^2 under an illumination of 1 sun.