AIM: To observe changes of mitochondria and investigate the effect of ethanol on mitochondrial perme- ability transition pore (PTP), mitochondrial membrane potential (MMP, ΔΨm) and intracellular calcium concentratio...AIM: To observe changes of mitochondria and investigate the effect of ethanol on mitochondrial perme- ability transition pore (PTP), mitochondrial membrane potential (MMP, ΔΨm) and intracellular calcium concentration in hepatocytes by establishing an animal model of alcoholic liver disease (ALD). METHODS: Fourty adult male Wistar rats were randomly divided into two groups, the model group (20) was administered alcohol intragastrically plus an Oliver oil diet to establish an ALD model, and the control group (20) was given an equal amount of normal saline. The ultramicrostructural changes of mitochondria were observed under electron microscopy. Mitochondria of liver was extracted, and patency of PTP, mitochondrial membrane potential (ΔΨm), mitochondrial mass and intracellular calcium concentration of isolated hepacytes were detected by flow cytometry using rhodamine123 (Rh123), Nonyl-Acridine Orange and calcium fluorescent probe Fluo-3/AM, respectively. RESULTS: Membrane and cristae were broken or disappeared in mitochondria in different shapes under electron microscopy. Some mitochondria showed U shape or megamitochondrion. In the model group, liver mitochondria PTP was broken, and mitochondria swelled, the absorbance at 450 nm, A540 decreased (0.0136 ± 0.0025 vs 0.0321 ± 0.0013, model vs control, P < 0.01); mitochondria transmembrane potential (239.4638 ± 12.7263 vs 377.5850 ± 16.8119, P < 0.01) was lowered; mitochondrial mass (17.4350 ± 1.9880 vs 31.6738 ± 3.4930, P < 0.01); and [Ca2+]i was increased in liver cells (7.0020 ± 0.5008 vs 10.2050 ± 0.4701, P < 0.01).CONCLUSION: Chronic alcohol intake might lead to broken mitochondria PTP, decreased mitochondria membrane potential and injury, and elevated intracellular Ca2+ production. Ethanol-induced chondriosome injury may be an important mechanism of alcoholic diseases.展开更多
Global energy structure is experiencing the third transition from fossil energy to non-fossil energy,to solve future energy problems,cope with climate change,and achieve net-zero emissions targets by 2050.Hydrogen is ...Global energy structure is experiencing the third transition from fossil energy to non-fossil energy,to solve future energy problems,cope with climate change,and achieve net-zero emissions targets by 2050.Hydrogen is considered to be the most potential clean energy in this century under the background of carbon neutrality.At present,the industrial methods for producing hydrogen are mainly by steam-hydrocarbon(such as coal and natural gas)reforming and by electrolysis of water,while the exploration and development of natural hydrogen had just started.According to this literature review:(1)Natural hydrogen can be divided into three categories,including free hydrogen,hydrogen in inclusions and dissolved hydrogen;(2)natural hydrogen could be mainly from abiotic origins such as by deep-seated hydrogen generation,water-rock reaction or water radiolysis;(3)natural hydrogen is widely distributed and presents great potential,and the potential natural hydrogen sources excluding deep source of hydrogen is about(254±91)×10^(9) m^(3)/a according to a latest estimate;(4)at present,natural hydrogen has been mined in Mali,and the exploration and development of natural hydrogen has also been carried out in Australia,Brazil,the United States and some European countries,to find many favorable areas and test some technical methods for natural hydrogen exploration.Natural hydrogen is expected to be an important part of hydrogen energy production in the future energy pattern.Based on a thorough literature review,this study introduced the origin,classification,and global discovery of natural hydrogen,as well as summarized the current global status and discussed the possibility of natural hydrogen exploration and development,aiming to provide reference for the future natural hydrogen exploration and development.展开更多
Molecular dynamics simulations are performed to investigate the misfit straininduced buckling of the transition-metai dichalcogenide(TMD)lateral heterostructures,denoted by the seamless epitaxial growth of different T...Molecular dynamics simulations are performed to investigate the misfit straininduced buckling of the transition-metai dichalcogenide(TMD)lateral heterostructures,denoted by the seamless epitaxial growth of different TMDs along the in-plane direction.The Stillinger-Weber potential is utilized to describe both the interaction for each TMD and the coupling between different TMDs,i.e.,MX2(with M=Mo,W and X=S,Se,Te).It is found that the misfit strain can induce strong buckling of the freestanding TMD lateral heterostructures of large area,resulting from the TMDs'atomic-thick nature.The buckling phenomenon occurs in a variety of TMD lateral heterostructures of different compositions and in various patterns.Our findings raise a fundamental mechanical challenge for the structural stability of the freestanding TMD lateral heterostructures.展开更多
Au nanowires in 4H crystalline phase(4H Au NWs)are synthesized by colloid solution methods.The crys-talline phase and surface structure as well as its performance toward electrochemical oxidation of CO be-fore and aft...Au nanowires in 4H crystalline phase(4H Au NWs)are synthesized by colloid solution methods.The crys-talline phase and surface structure as well as its performance toward electrochemical oxidation of CO be-fore and after removing adsorbed oleylamine molecules(OAs)intro-duced from its synthesis are evaluat-ed by high-resolution transmission electron microscopy(HR-TEM),X-ray diffraction(XRD),underpoten-tial deposition of Pb(Pb-upd)and cyclic voltammetry.Different methods,i.e.acetic acid cleaning,electrochemical oxidation cleaning,and diethylamine replacement,have been tried to remove the adsorbed OAs.For all methods,upon the removal of the adsorbed OAs,the morphology of 4H gold nanoparticles is found to gradually change from nanowires to large dumbbell-shaped nanoparticles,accompanying with a transition from the 4H phase to the face-centered cubic phase.On the other hand,the Pb-upd results show that the sample sur-faces have almost the same facet composition before and after removal of the adsorbed OAs.After electrochemical cleaning with continuous potential scans up to 1.3 V,CO electro-oxida-tion activity of the 4H Au sample is significantly improved.The CO electro-oxidation activi-ty is compared with results on the three basel Au single crystalline surfaces reported in the lit-erature,possible origins for its enhancement are discussed.展开更多
Phase transition is a core content of black hole thermodynamics. This study adopted Kramer’s escape rate method for describing the Brownian motion of particles in an external field to investigate the intensity of the...Phase transition is a core content of black hole thermodynamics. This study adopted Kramer’s escape rate method for describing the Brownian motion of particles in an external field to investigate the intensity of the phase transition between small and large black hole states. Some existing studies mostly focused on the formal analysis of the thermodynamic phase transition of black holes, but they neglected the detailed description of the phase transition process. Our results show that the phase transition between small and large black holes for charged anti-de Sitter(AdS) black holes presents serious asymmetric features, and the overall process is dominated by the transition from a small black hole to a large black hole. This study filled a research gap of a stochastic process analysis on the issue of the first-order phase transition rate in the Ad S black hole.展开更多
The conformational change of biological macromolecule is investigated from the point of quantum transition.A quantum theory on protein folding is proposed.Compared with other dynamical variables such as mobile electro...The conformational change of biological macromolecule is investigated from the point of quantum transition.A quantum theory on protein folding is proposed.Compared with other dynamical variables such as mobile electrons,chemical bonds and stretching-bending vibrations the molecular torsion has the lowest energy and can be looked as the slow variable of the system.Simultaneously,from the multi-minima property of torsion potential the local conformational states are well defined.Following the idea that the slow variables slave the fast ones and using the nonadiabaticity operator method we deduce the Hamiltonian describing conformational change.It is shown that the influence of fast variables on the macromolecule can fully be taken into account through a phase transformation of slow variable wave function.Starting from the conformation-transition Hamiltonian the nonradiative matrix element was calculated and a general formulas for protein folding rate was deduced.The analytical form of the formula was utilized to study the temperature dependence of protein folding rate and the curious non-Arrhenius temperature relation was interpreted.By using temperature dependence data the multi-torsion correlation was studied.The decoherence time of quantum torsion state is estimated.The proposed folding rate formula gives a unifying approach for the study of a large class problems of biological conformational change.展开更多
By means of expansions of rapidly in infinity decreasing functions in delta functions and their derivatives, we derive generalized boundary conditions of the Sturm-Liouville equation for transitions and barriers or we...By means of expansions of rapidly in infinity decreasing functions in delta functions and their derivatives, we derive generalized boundary conditions of the Sturm-Liouville equation for transitions and barriers or wells between two asymptotic potentials for which the solutions are supposed as known. We call such expansions “moment series” because the coefficients are determined by moments of the function. An infinite system of boundary conditions is obtained and it is shown how by truncation it can be reduced to approximations of a different order (explicitly made up to third order). Reflection and refraction problems are considered with such approximations and also discrete bound states possible in nonsymmetric and symmetric potential wells are dealt with. This is applicable for large wavelengths compared with characteristic lengths of potential changes. In Appendices we represent the corresponding foundations of Generalized functions and apply them to barriers and wells and to transition functions. The Sturm-Liouville equation is not only interesting because some important second-order differential equations can be reduced to it but also because it is easier to demonstrates some details of the derivations for this one-dimensional equation than for the full three-dimensional vectorial equations of electrodynamics of media. The article continues a paper that was made long ago.展开更多
基金Supported by Natural Science Foundation of Shandong Province, No. 032050113
文摘AIM: To observe changes of mitochondria and investigate the effect of ethanol on mitochondrial perme- ability transition pore (PTP), mitochondrial membrane potential (MMP, ΔΨm) and intracellular calcium concentration in hepatocytes by establishing an animal model of alcoholic liver disease (ALD). METHODS: Fourty adult male Wistar rats were randomly divided into two groups, the model group (20) was administered alcohol intragastrically plus an Oliver oil diet to establish an ALD model, and the control group (20) was given an equal amount of normal saline. The ultramicrostructural changes of mitochondria were observed under electron microscopy. Mitochondria of liver was extracted, and patency of PTP, mitochondrial membrane potential (ΔΨm), mitochondrial mass and intracellular calcium concentration of isolated hepacytes were detected by flow cytometry using rhodamine123 (Rh123), Nonyl-Acridine Orange and calcium fluorescent probe Fluo-3/AM, respectively. RESULTS: Membrane and cristae were broken or disappeared in mitochondria in different shapes under electron microscopy. Some mitochondria showed U shape or megamitochondrion. In the model group, liver mitochondria PTP was broken, and mitochondria swelled, the absorbance at 450 nm, A540 decreased (0.0136 ± 0.0025 vs 0.0321 ± 0.0013, model vs control, P < 0.01); mitochondria transmembrane potential (239.4638 ± 12.7263 vs 377.5850 ± 16.8119, P < 0.01) was lowered; mitochondrial mass (17.4350 ± 1.9880 vs 31.6738 ± 3.4930, P < 0.01); and [Ca2+]i was increased in liver cells (7.0020 ± 0.5008 vs 10.2050 ± 0.4701, P < 0.01).CONCLUSION: Chronic alcohol intake might lead to broken mitochondria PTP, decreased mitochondria membrane potential and injury, and elevated intracellular Ca2+ production. Ethanol-induced chondriosome injury may be an important mechanism of alcoholic diseases.
基金funded by the projects initiated by the China Geological Survey(DD20221794 and DD20190414).
文摘Global energy structure is experiencing the third transition from fossil energy to non-fossil energy,to solve future energy problems,cope with climate change,and achieve net-zero emissions targets by 2050.Hydrogen is considered to be the most potential clean energy in this century under the background of carbon neutrality.At present,the industrial methods for producing hydrogen are mainly by steam-hydrocarbon(such as coal and natural gas)reforming and by electrolysis of water,while the exploration and development of natural hydrogen had just started.According to this literature review:(1)Natural hydrogen can be divided into three categories,including free hydrogen,hydrogen in inclusions and dissolved hydrogen;(2)natural hydrogen could be mainly from abiotic origins such as by deep-seated hydrogen generation,water-rock reaction or water radiolysis;(3)natural hydrogen is widely distributed and presents great potential,and the potential natural hydrogen sources excluding deep source of hydrogen is about(254±91)×10^(9) m^(3)/a according to a latest estimate;(4)at present,natural hydrogen has been mined in Mali,and the exploration and development of natural hydrogen has also been carried out in Australia,Brazil,the United States and some European countries,to find many favorable areas and test some technical methods for natural hydrogen exploration.Natural hydrogen is expected to be an important part of hydrogen energy production in the future energy pattern.Based on a thorough literature review,this study introduced the origin,classification,and global discovery of natural hydrogen,as well as summarized the current global status and discussed the possibility of natural hydrogen exploration and development,aiming to provide reference for the future natural hydrogen exploration and development.
基金the Recruitment Program of Global Youth Experts of China,the National Natural Science Foundation of China(NSFC)under Grant No.11504225the Innovation Program of Shanghai Municipal Education Commission under Grant No.2017-01-07-00-09-E00019.
文摘Molecular dynamics simulations are performed to investigate the misfit straininduced buckling of the transition-metai dichalcogenide(TMD)lateral heterostructures,denoted by the seamless epitaxial growth of different TMDs along the in-plane direction.The Stillinger-Weber potential is utilized to describe both the interaction for each TMD and the coupling between different TMDs,i.e.,MX2(with M=Mo,W and X=S,Se,Te).It is found that the misfit strain can induce strong buckling of the freestanding TMD lateral heterostructures of large area,resulting from the TMDs'atomic-thick nature.The buckling phenomenon occurs in a variety of TMD lateral heterostructures of different compositions and in various patterns.Our findings raise a fundamental mechanical challenge for the structural stability of the freestanding TMD lateral heterostructures.
基金supported by the National Natural Science Foundation of China(No.22172151 and 21972131).
文摘Au nanowires in 4H crystalline phase(4H Au NWs)are synthesized by colloid solution methods.The crys-talline phase and surface structure as well as its performance toward electrochemical oxidation of CO be-fore and after removing adsorbed oleylamine molecules(OAs)intro-duced from its synthesis are evaluat-ed by high-resolution transmission electron microscopy(HR-TEM),X-ray diffraction(XRD),underpoten-tial deposition of Pb(Pb-upd)and cyclic voltammetry.Different methods,i.e.acetic acid cleaning,electrochemical oxidation cleaning,and diethylamine replacement,have been tried to remove the adsorbed OAs.For all methods,upon the removal of the adsorbed OAs,the morphology of 4H gold nanoparticles is found to gradually change from nanowires to large dumbbell-shaped nanoparticles,accompanying with a transition from the 4H phase to the face-centered cubic phase.On the other hand,the Pb-upd results show that the sample sur-faces have almost the same facet composition before and after removal of the adsorbed OAs.After electrochemical cleaning with continuous potential scans up to 1.3 V,CO electro-oxida-tion activity of the 4H Au sample is significantly improved.The CO electro-oxidation activi-ty is compared with results on the three basel Au single crystalline surfaces reported in the lit-erature,possible origins for its enhancement are discussed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 12105222, 12275216, and 12247103)the Double First-class University Construction Project of Northwest University。
文摘Phase transition is a core content of black hole thermodynamics. This study adopted Kramer’s escape rate method for describing the Brownian motion of particles in an external field to investigate the intensity of the phase transition between small and large black hole states. Some existing studies mostly focused on the formal analysis of the thermodynamic phase transition of black holes, but they neglected the detailed description of the phase transition process. Our results show that the phase transition between small and large black holes for charged anti-de Sitter(AdS) black holes presents serious asymmetric features, and the overall process is dominated by the transition from a small black hole to a large black hole. This study filled a research gap of a stochastic process analysis on the issue of the first-order phase transition rate in the Ad S black hole.
文摘The conformational change of biological macromolecule is investigated from the point of quantum transition.A quantum theory on protein folding is proposed.Compared with other dynamical variables such as mobile electrons,chemical bonds and stretching-bending vibrations the molecular torsion has the lowest energy and can be looked as the slow variable of the system.Simultaneously,from the multi-minima property of torsion potential the local conformational states are well defined.Following the idea that the slow variables slave the fast ones and using the nonadiabaticity operator method we deduce the Hamiltonian describing conformational change.It is shown that the influence of fast variables on the macromolecule can fully be taken into account through a phase transformation of slow variable wave function.Starting from the conformation-transition Hamiltonian the nonradiative matrix element was calculated and a general formulas for protein folding rate was deduced.The analytical form of the formula was utilized to study the temperature dependence of protein folding rate and the curious non-Arrhenius temperature relation was interpreted.By using temperature dependence data the multi-torsion correlation was studied.The decoherence time of quantum torsion state is estimated.The proposed folding rate formula gives a unifying approach for the study of a large class problems of biological conformational change.
文摘By means of expansions of rapidly in infinity decreasing functions in delta functions and their derivatives, we derive generalized boundary conditions of the Sturm-Liouville equation for transitions and barriers or wells between two asymptotic potentials for which the solutions are supposed as known. We call such expansions “moment series” because the coefficients are determined by moments of the function. An infinite system of boundary conditions is obtained and it is shown how by truncation it can be reduced to approximations of a different order (explicitly made up to third order). Reflection and refraction problems are considered with such approximations and also discrete bound states possible in nonsymmetric and symmetric potential wells are dealt with. This is applicable for large wavelengths compared with characteristic lengths of potential changes. In Appendices we represent the corresponding foundations of Generalized functions and apply them to barriers and wells and to transition functions. The Sturm-Liouville equation is not only interesting because some important second-order differential equations can be reduced to it but also because it is easier to demonstrates some details of the derivations for this one-dimensional equation than for the full three-dimensional vectorial equations of electrodynamics of media. The article continues a paper that was made long ago.