Purpose:The disseminating of academic knowledge to nonacademic audiences partly relies on the transition of subsequent citing papers.This study aims to investigate direct and indirect impact on technology and policy o...Purpose:The disseminating of academic knowledge to nonacademic audiences partly relies on the transition of subsequent citing papers.This study aims to investigate direct and indirect impact on technology and policy originating from transformative research based on ego citation network.Design/methodology/approach:Key Nobel Prize-winning publications(NPs)in fields of gene engineering and astrophysics are regarded as a proxy for transformative research.In this contribution,we introduce a network-structural indicator of citing patents to measure technological impact of a target article and use policy citations as a preliminary tool for policy impact.Findings:The results show that the impact on technology and policy of NPs are higher than that of their subsequent citation generations in gene engineering but not in astrophysics.Research limitations:The selection of Nobel Prizes is not balanced and the database used in this study,Dimensions,suffers from incompleteness and inaccuracy of citation links.Practical implications:Our findings provide useful clues to better understand the characteristics of transformative research in technological and policy impact.Originality/value:This study proposes a new framework to explore the direct and indirect impact on technology and policy originating from transformative research.展开更多
This paper focuses mainly on semi-strapdown image homing guided (SSIHG) system design based on optical flow for a six-degree-of-freedom (6-DOF) axial-symmetric skid-to-turn missile. Three optical flow algorithms s...This paper focuses mainly on semi-strapdown image homing guided (SSIHG) system design based on optical flow for a six-degree-of-freedom (6-DOF) axial-symmetric skid-to-turn missile. Three optical flow algorithms suitable for large displacements are introduced and compared. The influence of different displacements on computational accuracy of the three algorithms is analyzed statistically. The total optical flow of the SSIHG missile is obtained using the Scale Invariant Feature Transform (SIFT) algorithm, which is the best among the three for large displacements. After removing the rotational optical flow caused by rotation of the gimbal and missile body from the total optical flow, the remaining translational optical flow is smoothed via Kalman filtering. The circular navigation guidance (CNG) law with impact angle constraint is then obtained utilizing the smoothed translational optical flow and position of the target image. Simulations are carried out under both disturbed and undisturbed conditions, and results indicate the proposed guidance strategy for SSIHG missiles can result in a precise target hit with a desired impact angle without the need for the time-to-go parameter.展开更多
This paper analyzes the dynamic magnetoelectroelastic behavior induced by a pennyshaped crack in a magnetoelectroelastic layer. The crack surfaces are subjected to only radial shear impact loading. The Laplace and Han...This paper analyzes the dynamic magnetoelectroelastic behavior induced by a pennyshaped crack in a magnetoelectroelastic layer. The crack surfaces are subjected to only radial shear impact loading. The Laplace and Hankel transform techniques are employed to reduce the problem to solving a Fredholm integral equation. The dynamic stress intensity factor is obtained and numerically calculated for different layer heights. And the corresponding static solution is given by simple analysis. It is seen that the dynamic stress intensity factor for cracks in a magnetoelectroelastic layer has the same expression as that in a purely elastic material. And the influences of layer height on both the dynamic and static stress intensity factors are insignificant as h/a 〉 2.展开更多
The transient response of an unlimited cylindrical cavity buried in the infinite elastic soil subjected to an anti-plane impact load along the cavern axis direction was studied.Using Laplace transform combining with c...The transient response of an unlimited cylindrical cavity buried in the infinite elastic soil subjected to an anti-plane impact load along the cavern axis direction was studied.Using Laplace transform combining with contour integral of the Laplace inverse transform specifically,the general analytical expressions of the soil displacement and stress are obtained in the time domain,respectively.And the numerical solutions of the problem computed by analytical expressions are presented.In the time domain,the dynamic responses of the infinite elastic soil are analyzed,and the calculation results are compared with those from numerical inversion proposed by Durbin and the static results.One observes good agreement between analytical and numerical inversion results,lending the further support to the method presented.Finally,some valuable shear wave propagation laws are gained: the displacement of the soil remains zero before the wave arrival,and after the shear wave arrival,the stress and the displacement at this point increase abruptly,then reduce and tend to the static value gradually at last.The wave attenuates along the radial,therefore the farther the wave is from the source,the smaller the stress and the displacement are,and the stress and the displacement are just functions of the radial distance from the axis.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.71974167).
文摘Purpose:The disseminating of academic knowledge to nonacademic audiences partly relies on the transition of subsequent citing papers.This study aims to investigate direct and indirect impact on technology and policy originating from transformative research based on ego citation network.Design/methodology/approach:Key Nobel Prize-winning publications(NPs)in fields of gene engineering and astrophysics are regarded as a proxy for transformative research.In this contribution,we introduce a network-structural indicator of citing patents to measure technological impact of a target article and use policy citations as a preliminary tool for policy impact.Findings:The results show that the impact on technology and policy of NPs are higher than that of their subsequent citation generations in gene engineering but not in astrophysics.Research limitations:The selection of Nobel Prizes is not balanced and the database used in this study,Dimensions,suffers from incompleteness and inaccuracy of citation links.Practical implications:Our findings provide useful clues to better understand the characteristics of transformative research in technological and policy impact.Originality/value:This study proposes a new framework to explore the direct and indirect impact on technology and policy originating from transformative research.
基金supported by the Armament Research Fund of China (No.9020A02010313BQ01)
文摘This paper focuses mainly on semi-strapdown image homing guided (SSIHG) system design based on optical flow for a six-degree-of-freedom (6-DOF) axial-symmetric skid-to-turn missile. Three optical flow algorithms suitable for large displacements are introduced and compared. The influence of different displacements on computational accuracy of the three algorithms is analyzed statistically. The total optical flow of the SSIHG missile is obtained using the Scale Invariant Feature Transform (SIFT) algorithm, which is the best among the three for large displacements. After removing the rotational optical flow caused by rotation of the gimbal and missile body from the total optical flow, the remaining translational optical flow is smoothed via Kalman filtering. The circular navigation guidance (CNG) law with impact angle constraint is then obtained utilizing the smoothed translational optical flow and position of the target image. Simulations are carried out under both disturbed and undisturbed conditions, and results indicate the proposed guidance strategy for SSIHG missiles can result in a precise target hit with a desired impact angle without the need for the time-to-go parameter.
基金Project supported by the National Natural Science Foundation of China(No.10772123)the Natural Science Fund of Hebei Province(No.E2006000398).
文摘This paper analyzes the dynamic magnetoelectroelastic behavior induced by a pennyshaped crack in a magnetoelectroelastic layer. The crack surfaces are subjected to only radial shear impact loading. The Laplace and Hankel transform techniques are employed to reduce the problem to solving a Fredholm integral equation. The dynamic stress intensity factor is obtained and numerically calculated for different layer heights. And the corresponding static solution is given by simple analysis. It is seen that the dynamic stress intensity factor for cracks in a magnetoelectroelastic layer has the same expression as that in a purely elastic material. And the influences of layer height on both the dynamic and static stress intensity factors are insignificant as h/a 〉 2.
文摘The transient response of an unlimited cylindrical cavity buried in the infinite elastic soil subjected to an anti-plane impact load along the cavern axis direction was studied.Using Laplace transform combining with contour integral of the Laplace inverse transform specifically,the general analytical expressions of the soil displacement and stress are obtained in the time domain,respectively.And the numerical solutions of the problem computed by analytical expressions are presented.In the time domain,the dynamic responses of the infinite elastic soil are analyzed,and the calculation results are compared with those from numerical inversion proposed by Durbin and the static results.One observes good agreement between analytical and numerical inversion results,lending the further support to the method presented.Finally,some valuable shear wave propagation laws are gained: the displacement of the soil remains zero before the wave arrival,and after the shear wave arrival,the stress and the displacement at this point increase abruptly,then reduce and tend to the static value gradually at last.The wave attenuates along the radial,therefore the farther the wave is from the source,the smaller the stress and the displacement are,and the stress and the displacement are just functions of the radial distance from the axis.