In 2006, Sanwong and Sullivan described the maximal congruences on the semigroup N consisting of all non-negative integers under standard multiplication, and on the semigroup T(X) consisting of all total transformat...In 2006, Sanwong and Sullivan described the maximal congruences on the semigroup N consisting of all non-negative integers under standard multiplication, and on the semigroup T(X) consisting of all total transformations of an infinite set X under composition. Here, we determine all maximal congruences on the semigroup Zn under multiplication modulo n. And, when Y lohtain in X, we do the same for the semigroup T(X, Y) consisting of all elements of T(X) whose range is contained in Y. We also characterise the minimal congruences on T(X. Y).展开更多
An ordered pair (e, f) of idempotents of a regular semigroup is called a skew pair if ef is not idempotent whereas fe is idempotent. We have shown previously that there are four distinct types of skew pairs of idemp...An ordered pair (e, f) of idempotents of a regular semigroup is called a skew pair if ef is not idempotent whereas fe is idempotent. We have shown previously that there are four distinct types of skew pairs of idempotents. Here we investigate the ubiquity of such skew pairs in full transformation semigroups.展开更多
文摘In 2006, Sanwong and Sullivan described the maximal congruences on the semigroup N consisting of all non-negative integers under standard multiplication, and on the semigroup T(X) consisting of all total transformations of an infinite set X under composition. Here, we determine all maximal congruences on the semigroup Zn under multiplication modulo n. And, when Y lohtain in X, we do the same for the semigroup T(X, Y) consisting of all elements of T(X) whose range is contained in Y. We also characterise the minimal congruences on T(X. Y).
文摘An ordered pair (e, f) of idempotents of a regular semigroup is called a skew pair if ef is not idempotent whereas fe is idempotent. We have shown previously that there are four distinct types of skew pairs of idempotents. Here we investigate the ubiquity of such skew pairs in full transformation semigroups.