最大均值差异(Maximum mean discrepancy,MMD)作为一种能有效度量源域和目标域分布差异的标准已被成功运用.然而,MMD作为一种全局度量方法一定程度上反映的是区域之间全局分布和全局结构上的差异.为此,本文通过引入局部加权均值的方法...最大均值差异(Maximum mean discrepancy,MMD)作为一种能有效度量源域和目标域分布差异的标准已被成功运用.然而,MMD作为一种全局度量方法一定程度上反映的是区域之间全局分布和全局结构上的差异.为此,本文通过引入局部加权均值的方法和理论到MMD中,提出一种具有局部保持能力的投影最大局部加权均值差异(Projected maximum local weighted mean discrepancy,PMLWD)度量,结合传统的学习理论提出基于局部加权均值的领域适应学习框架(Local weighted mean based domain adaptation learning framework,LDAF),在LDAF框架下,衍生出两种领域适应学习方法:LDAF MLC和LDAF SVM.最后,通过测试人工数据集、高维文本数据集和人脸数据集来表明LDAF比其他领域适应学习方法更具优势.展开更多
深度强化学习在训练过程中会探索大量环境样本,造成算法收敛时间过长,而重用或传输来自先前任务(源任务)学习的知识,对算法在新任务(目标任务)的学习具有提高算法收敛速度的潜力。为了提高算法学习效率,提出一种双Q网络学习的迁移强化...深度强化学习在训练过程中会探索大量环境样本,造成算法收敛时间过长,而重用或传输来自先前任务(源任务)学习的知识,对算法在新任务(目标任务)的学习具有提高算法收敛速度的潜力。为了提高算法学习效率,提出一种双Q网络学习的迁移强化学习算法,其基于actor-critic框架迁移源任务最优值函数的知识,使目标任务中值函数网络对策略作出更准确的评价,引导策略快速向最优策略方向更新。将该算法用于Open AI Gym以及在三维空间机械臂到达目标物位置的实验中,相比于常规深度强化学习算法取得了更好的效果,实验证明提出的双Q网络学习的迁移强化学习算法具有较快的收敛速度,并且在训练过程中算法探索更加稳定。展开更多
基于卷积结构的信号调制识别神经网络的识别性能受信号调制类型种类限制。例如,在12 d B信噪比条件下,同时对24种信号调制类型进行识别,其识别准确率仅为80%。若需要进一步提高识别性能,则要求更复杂的网络模型,导致网络训练所需数据集...基于卷积结构的信号调制识别神经网络的识别性能受信号调制类型种类限制。例如,在12 d B信噪比条件下,同时对24种信号调制类型进行识别,其识别准确率仅为80%。若需要进一步提高识别性能,则要求更复杂的网络模型,导致网络训练所需数据集规模和硬件资源成本增大。鉴于此,针对无线电信号特征,设计一种适用于无线电信号调制识别的紧致残差神经网络,将其作为信号调制类型特征学习和特征提取工具,实现从原始I、Q数据到信号调制类型的端到端识别。利用迁移学习降低网络重新训练所需样本数,增强在无线信道响应发生变化时的环境适应能力,降低训练阶段所需的硬件资源和训练数据集规模。研究表明,当信道脉冲响应改变时,所提的信号调制识别神经网络在信噪比为12 d B条件下的识别性能达到95%,多个对比实验验证本文所设计神经网络的识别性能具有优势。展开更多
文摘最大均值差异(Maximum mean discrepancy,MMD)作为一种能有效度量源域和目标域分布差异的标准已被成功运用.然而,MMD作为一种全局度量方法一定程度上反映的是区域之间全局分布和全局结构上的差异.为此,本文通过引入局部加权均值的方法和理论到MMD中,提出一种具有局部保持能力的投影最大局部加权均值差异(Projected maximum local weighted mean discrepancy,PMLWD)度量,结合传统的学习理论提出基于局部加权均值的领域适应学习框架(Local weighted mean based domain adaptation learning framework,LDAF),在LDAF框架下,衍生出两种领域适应学习方法:LDAF MLC和LDAF SVM.最后,通过测试人工数据集、高维文本数据集和人脸数据集来表明LDAF比其他领域适应学习方法更具优势.
文摘针对不同型号滚动轴承监测信号之间特征分布差异大、故障数据样本少,导致轴承故障精度低的问题,提出了一种基于改进交替迁移学习的滚动轴承故障诊断算法。为了充分发挥卷积神经网络(convolutional neural network, CNN)对二维数据优秀的特征提取能力,首先将一维振动信号转化为二维图像,输入到深度卷积神经网络中学习;其次,为了减少源域与目标域数据间的特征分布差异,提出了改进的交替迁移学习(improved alternately transfer learning, IATL),通过交替计算域间的CORAL损失函数和最大均值差异(maximum mean discrepancy, MMD)损失函数,并反向传播更新各层网络权重与偏置参数,以实现变工况、跨轴承型号和小故障样本条件下轴承特征迁移适配;最后,在全连接层使用Softmax函数对目标域数据进行故障诊断。为了验证该算法的有效性,采用凯斯西储大学(Case Western Reserve University, CWRU)的滚动轴承数据集进行了迁移试验验证。结果表明,与仅计算CORAL损失函数和MMD损失函数等算法对比可知,该算法有效地减少了领域数据之间的特征分布差异,具有较高的故障分类准确率。
文摘深度强化学习在训练过程中会探索大量环境样本,造成算法收敛时间过长,而重用或传输来自先前任务(源任务)学习的知识,对算法在新任务(目标任务)的学习具有提高算法收敛速度的潜力。为了提高算法学习效率,提出一种双Q网络学习的迁移强化学习算法,其基于actor-critic框架迁移源任务最优值函数的知识,使目标任务中值函数网络对策略作出更准确的评价,引导策略快速向最优策略方向更新。将该算法用于Open AI Gym以及在三维空间机械臂到达目标物位置的实验中,相比于常规深度强化学习算法取得了更好的效果,实验证明提出的双Q网络学习的迁移强化学习算法具有较快的收敛速度,并且在训练过程中算法探索更加稳定。
文摘基于卷积结构的信号调制识别神经网络的识别性能受信号调制类型种类限制。例如,在12 d B信噪比条件下,同时对24种信号调制类型进行识别,其识别准确率仅为80%。若需要进一步提高识别性能,则要求更复杂的网络模型,导致网络训练所需数据集规模和硬件资源成本增大。鉴于此,针对无线电信号特征,设计一种适用于无线电信号调制识别的紧致残差神经网络,将其作为信号调制类型特征学习和特征提取工具,实现从原始I、Q数据到信号调制类型的端到端识别。利用迁移学习降低网络重新训练所需样本数,增强在无线信道响应发生变化时的环境适应能力,降低训练阶段所需的硬件资源和训练数据集规模。研究表明,当信道脉冲响应改变时,所提的信号调制识别神经网络在信噪比为12 d B条件下的识别性能达到95%,多个对比实验验证本文所设计神经网络的识别性能具有优势。