期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
基于k均值聚类的直推式支持向量机学习算法 被引量:12
1
作者 王立梅 李金凤 岳琪 《计算机工程与应用》 CSCD 2013年第14期144-146,共3页
针对直推式支持向量机(TSVM)学习模型求解难度大的问题,提出了一种基于k均值聚类的直推式支持向量机学习算法——TSVMKMC。该算法利用k均值聚类算法,将无标签样本分为若干簇,对每一簇样本赋予相同的类别标签,将无标签样本和有标签样本... 针对直推式支持向量机(TSVM)学习模型求解难度大的问题,提出了一种基于k均值聚类的直推式支持向量机学习算法——TSVMKMC。该算法利用k均值聚类算法,将无标签样本分为若干簇,对每一簇样本赋予相同的类别标签,将无标签样本和有标签样本合并进行直推式学习。由于TSVMKMC算法有效地降低了状态空间的规模,因此运行速度较传统算法有了很大的提高。实验结果表明,TSVMSC算法能够以较快的速度达到较高的分类准确率。 展开更多
关键词 直推式学习 支持向量机 K均值聚类 无标签样本
下载PDF
基于TSVM的网络入侵检测研究 被引量:5
2
作者 徐文龙 姚立红 +1 位作者 潘理 倪佑生 《计算机工程》 EI CAS CSCD 北大核心 2006年第18期138-140,共3页
直推式支持向量机(TSVM)是一种直接从已知样本出发对特定的未知样本进行识别和分类的技术。该文提出了基于TSVM的网络入侵检测系统模型,并用实验给出了它在网络入侵检测中的性能表现,分析了它与基于传统归纳式支持向量机(ISVM)的入侵检... 直推式支持向量机(TSVM)是一种直接从已知样本出发对特定的未知样本进行识别和分类的技术。该文提出了基于TSVM的网络入侵检测系统模型,并用实验给出了它在网络入侵检测中的性能表现,分析了它与基于传统归纳式支持向量机(ISVM)的入侵检测系统的性能对比。实验结果表明,将TSVM应用到入侵检测是切实可行的。 展开更多
关键词 入侵检测 统计学习 直推式支持向量机
下载PDF
采用两阶段策略模型(KTSVM)的P2P流量识别方法 被引量:8
3
作者 丁要军 蔡皖东 《西安交通大学学报》 EI CAS CSCD 北大核心 2012年第2期45-50,129,共7页
针对识别加密P2P网络流量比较困难的问题,提出一种基于K均值和直推式支持向量机(TSVM)的半监督学习模型———两阶段策略模型(KTSVM,k-means based transductive supportvector machine),以提高P2P流量的识别精度.该模型首先使用K均值... 针对识别加密P2P网络流量比较困难的问题,提出一种基于K均值和直推式支持向量机(TSVM)的半监督学习模型———两阶段策略模型(KTSVM,k-means based transductive supportvector machine),以提高P2P流量的识别精度.该模型首先使用K均值半监督聚类算法计算训练集中正例样本的数目,然后根据正例样本的数目来训练TSVM分类模型,提高了TSVM模型的稳定性和准确性.该模型的优势是可以使用未标注样本和标注样本共同训练分类模型,非常适合于识别标注比较困难的P2P流量.实验结果表明,在标注样本较少的情况下,该模型的识别精度和稳定性均优于TSVM模型和SVM模型. 展开更多
关键词 直推式支持向量机 半监督学习 流量识别 对等网络流量 互联网
下载PDF
基于直推式学习的半监督属性抽取 被引量:5
4
作者 苏丰龙 谢庆华 +2 位作者 黄清泉 邱继远 岳振军 《山东大学学报(理学版)》 CAS CSCD 北大核心 2016年第3期111-115,共5页
针对在文本信息抽取研究中传统的监督学习方法存在标注工作量大和时间代价高等缺点,提出一种改进的半监督学习模型。该模型利用支持向量机的分类优势以及直推式学习在未标注样本上的泛化特点,先用少量标注语料进行学习,同时测试新语料,... 针对在文本信息抽取研究中传统的监督学习方法存在标注工作量大和时间代价高等缺点,提出一种改进的半监督学习模型。该模型利用支持向量机的分类优势以及直推式学习在未标注样本上的泛化特点,先用少量标注语料进行学习,同时测试新语料,然后再加入到模型当中一起训练,调整预测规律。在领域实体属性抽取试验中,与传统的支持向量机学习方法相比,该模型能够在小语料条件下取得较好的抽取效果,泛化学习能力较强,可以节省大量的人力成本。 展开更多
关键词 信息抽取 半监督学习 直推式支持向量机 属性抽取
原文传递
基于聚类和协同标注的TSVM算法 被引量:4
5
作者 杜红乐 张燕 《河南科学》 2017年第1期22-27,共6页
针对数据集中类样本不均衡、样本标注代价大的问题,结合聚类算法、委员会投票思想和TSVM算法,提出一种基于聚类和协同标注的TSVM算法,该方法利用聚类算法进行子集划分,保证每个子集都包含良好的空间信息,对样本的标注采用多个分类器进... 针对数据集中类样本不均衡、样本标注代价大的问题,结合聚类算法、委员会投票思想和TSVM算法,提出一种基于聚类和协同标注的TSVM算法,该方法利用聚类算法进行子集划分,保证每个子集都包含良好的空间信息,对样本的标注采用多个分类器进行投票,提高标记准确率,减少错误的累积和传递,提高标注准确率,增强最后分类器的泛化性能.KDDCUP99数据集上的实验结果表明该方法对未知攻击有较高的检测准确率. 展开更多
关键词 直推式支持向量机 聚类算法 委员会投票算法 协同标注
下载PDF
协同主动学习和半监督方法的海冰图像分类 被引量:3
6
作者 韩彦岭 赵耀 +4 位作者 周汝雁 张云 王静 杨树瑚 洪中华 《海洋学报》 CAS CSCD 北大核心 2020年第1期123-135,共13页
海冰遥感光谱影像分类中标签样本难以获取,导致海冰分类精度难以提高,但是大量包含丰富信息的未标签样本却没有得到充分利用,针对这种情况,提出一种协同主动学习和半监督学习方法用于海冰遥感图像分类。在主动学习部分,结合最优标号和... 海冰遥感光谱影像分类中标签样本难以获取,导致海冰分类精度难以提高,但是大量包含丰富信息的未标签样本却没有得到充分利用,针对这种情况,提出一种协同主动学习和半监督学习方法用于海冰遥感图像分类。在主动学习部分,结合最优标号和次优标号、自组织映射神经网络以及增强的聚类多样性算法来选择兼具不确定性和差异性的样本参与训练;在半监督学习部分,利用直推式支持向量机,并且融合主动学习思想从大量未标签样本中选取相对可靠且包含一定信息量的样本进行迭代训练;然后协同主动学习分类结果和半监督分类结果,通过一致性验证保证所加入伪标签样本的正确性。为了验证方法的有效性,分别采用巴芬湾地区30 m分辨率的Hyperion高光谱数据(验证数据为15 m分辨率的Landsat-8数据)和辽东湾地区15 m分辨率的Landsat-8数据(验证数据为4.77 m分辨率的Google Earth数据)进行海冰分类实验。实验结果表明,相对其他传统方法,该协同分类方法可以在只有少量标签样本的情况下,充分利用大量未标签样本中包含的信息,实现快速收敛,并获得较高的分类精度(两个实验的总体精度分别为90.003%和93.288%),适用于海冰遥感图像分类。 展开更多
关键词 海冰分类 主动学习 半监督学习 直推式支持向量机 协同训练
下载PDF
主动学习与半监督技术相结合的海冰图像分类 被引量:2
7
作者 韩彦岭 李鹏 +2 位作者 张云 徐利军 王静 《遥感信息》 CSCD 北大核心 2019年第2期15-22,共8页
针对海冰遥感图像分类问题中标签样本获取困难、标注成本较高导致海冰分类精度难以提高的问题,提出了一种主动学习与半监督学习相结合的方式用于海冰分类。首先,利用基于不确定性准则和多样性准则进行主动学习方法,选择一批最具信息量... 针对海冰遥感图像分类问题中标签样本获取困难、标注成本较高导致海冰分类精度难以提高的问题,提出了一种主动学习与半监督学习相结合的方式用于海冰分类。首先,利用基于不确定性准则和多样性准则进行主动学习方法,选择一批最具信息量的标签样本建立标签样本集;其次,充分利用大量的未标签样本信息,并融合主动学习采样的思想选出部分具有代表性且分布在支持向量周边的半标签样本,建立半监督分类模型;最后,将主动学习方法和直推式支持向量机相结合构建分类模型实现海冰图像分类。实验结果表明,相对于其他方法,该方法在只有少量标签样本的情况下,可以获得更高的分类精度,该方式可有效解决遥感海冰分类问题。 展开更多
关键词 海冰 主动学习 半监督学习 直推式支持向量机 分类
下载PDF
基于多示例学习的图像分类算法 被引量:2
8
作者 汪旗 贾兆红 《计算机技术与发展》 2014年第4期88-91,共4页
基于内容的图像分类计数通常基于图像的单一特征进行处理,而图像中包含的内容不止一个,单一的特征不足以充分描述图像,多实例学习方法由于其特殊性可以很好地解决这个难题。文中针对基于多示例学习的图像分类问题提出了一种新的多示例... 基于内容的图像分类计数通常基于图像的单一特征进行处理,而图像中包含的内容不止一个,单一的特征不足以充分描述图像,多实例学习方法由于其特殊性可以很好地解决这个难题。文中针对基于多示例学习的图像分类问题提出了一种新的多示例学习算法DD-TSVM。该方法以图像作为包,图像中的区域作为包中示例。算法首先采用多样性密度算法寻找示例集的局部最大值以构建投影空间并将包映射为投影空间中的一个点;然后利用直推式支持向量机作为学习算法训练学习得到分类器。该算法有效地利用了未标记样本,基于Corel图像数据库的实验结果表明,DD-TSVM具有良好的性能。 展开更多
关键词 多示例学习 多样性密度 直推式支持向量机 图像分类
下载PDF
直推式支持向量机的研究学习 被引量:1
9
作者 王利文 刘琼荪 《重庆工商大学学报(自然科学版)》 2014年第5期58-64,共7页
传统的支持向量机(SVM)是一种有监督的机器学习方法,需要大量的有标签样本,而实际中对于有标签的样本数量十分有限且获得困难;直推式学习正是依据已知样本对特定的未知样本进行识别的方法与准则;研究了近年来直推式支持向量机学习算法... 传统的支持向量机(SVM)是一种有监督的机器学习方法,需要大量的有标签样本,而实际中对于有标签的样本数量十分有限且获得困难;直推式学习正是依据已知样本对特定的未知样本进行识别的方法与准则;研究了近年来直推式支持向量机学习算法及其改进算法,讨论了直推式学习算法的优缺点并对其发展进行了展望。 展开更多
关键词 支持向量机 直推式支持向量机 半监督学习 最小二乘 模糊学习
下载PDF
Progressive transductive learning pattern classification via single sphere
10
作者 Xue Zhenxia Liu Sanyang Liu Wanli 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第3期643-650,共8页
In many machine learning problems, a large amount of data is available but only a few of them can be labeled easily. This provides a research branch to effectively combine unlabeled and labeled data to infer the label... In many machine learning problems, a large amount of data is available but only a few of them can be labeled easily. This provides a research branch to effectively combine unlabeled and labeled data to infer the labels of unlabeled ones, that is, to develop transductive learning. In this article, based on Pattern classification via single sphere (SSPC), which seeks a hypersphere to separate data with the maximum separation ratio, a progressive transductive pattern classification method via single sphere (PTSSPC) is proposed to construct the classifier using both the labeled and unlabeled data. PTSSPC utilize the additional information of the unlabeled samples and obtain better classification performance than SSPC when insufficient labeled data information is available. Experiment results show the algorithm can yields better performance. 展开更多
关键词 pattern recognition semi-supervised learning transductive learning CLASSIFICATION support vector machine support vector domain description.
下载PDF
基于TSVM的矿用钻机变速箱故障智能诊断 被引量:1
11
作者 申中杰 《煤矿机械》 2017年第9期148-150,共3页
为解决矿用钻机变速箱因典型案例少而故障诊断困难的问题,提出一种基于多分类直推式支持向量机(TSVM)的智能诊断方法。通过经验模式分解提取变速箱振动信号中的微弱故障信息,随后计算时域和频域统计特征,选取敏感特征作为输入,最后输入T... 为解决矿用钻机变速箱因典型案例少而故障诊断困难的问题,提出一种基于多分类直推式支持向量机(TSVM)的智能诊断方法。通过经验模式分解提取变速箱振动信号中的微弱故障信息,随后计算时域和频域统计特征,选取敏感特征作为输入,最后输入TSVM模型中自动识别钻机变速箱故障类型。即使在未知状态样本数目是已知故障样本数目50倍的极端条件下,该智能诊断方法的分类准确率仍能达到91.62%±5.31%。实验结果表明,基于TSVM智能诊断方法能较好识别钻机变速箱故障,具有较强的工程使用价值和通用性。 展开更多
关键词 直推式支持向量机 经验模式分解 智能诊断 钻机变速箱
下载PDF
融合深度特征的多示例学习陶俑图像分类 被引量:1
12
作者 温超 屈健 李展 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第6期895-902,共8页
针对陶俑文物的图像理解问题,陶俑分类可为其提供有价值的信息,该文提出了一种融合深度特征的多示例学习(MIL)方法用于陶俑图像分类。首先,对陶俑图像进行分割,提取出分割区域的手工特征(包括尺度不变特征变换和形态特征)和卷积神经网... 针对陶俑文物的图像理解问题,陶俑分类可为其提供有价值的信息,该文提出了一种融合深度特征的多示例学习(MIL)方法用于陶俑图像分类。首先,对陶俑图像进行分割,提取出分割区域的手工特征(包括尺度不变特征变换和形态特征)和卷积神经网络特征;接着,采用联合字典学习获取多示例学习的多概念点,并使用多核将深度学习特征与传统手工特征融合到多示例学习框架;最后,利用直推式支持向量机进行分类。在陶俑图像集和MIL数据集上的实验结果表明,该文方法是有效的,且相较其他深度和非深度MIL算法具有更高的分类准确度。 展开更多
关键词 陶俑图像 多示例学习 卷积神经网络 多核 直推式支持向量机
下载PDF
多分类转导支持向量机
13
作者 胡政发 《湖北汽车工业学院学报》 2007年第4期46-49,68,共5页
为了完成分类学习,传统的支持向量机基于带标记信息的经验数据归纳出一个通用的决策函数。而转导支持向量机则不同,它考虑包含测试集在内的所有数据信息并致力于最小化测试样本的分类错误数。在已有的2类分类方法的基础上构造了直接求... 为了完成分类学习,传统的支持向量机基于带标记信息的经验数据归纳出一个通用的决策函数。而转导支持向量机则不同,它考虑包含测试集在内的所有数据信息并致力于最小化测试样本的分类错误数。在已有的2类分类方法的基础上构造了直接求解多类分类问题的的转导支持向量机。 展开更多
关键词 转导推理 支持向量机 多类分类学习
下载PDF
代价敏感的直推式支持向量机算法
14
作者 杜红乐 张燕 《河南科学》 2017年第8期1227-1231,共5页
针对不均衡数据集下分类超平面偏移导致直推式支持向量机样本标记准确率低的问题,结合动态代价和TSVM算法,提出一种代价敏感的TSVM算法,该算法依据类样本的空间分布信息计算类错分代价,利用KKT条件选择对当前分类超平面有影响的样本加... 针对不均衡数据集下分类超平面偏移导致直推式支持向量机样本标记准确率低的问题,结合动态代价和TSVM算法,提出一种代价敏感的TSVM算法,该算法依据类样本的空间分布信息计算类错分代价,利用KKT条件选择对当前分类超平面有影响的样本加入下一轮迭代,该算法可以提高初始分类器的分类性能,减少错误的传递和累积,从而提高标注准确率,增强最后分类器的泛化性能.最后在UCI数据集上的实验结果表明该算法在不均衡数据集下的有效性. 展开更多
关键词 直推式支持向量机 代价敏感 不均衡数据集
下载PDF
增量学习直推式支持向量机及其在旋转机械状态判别中的应用
15
作者 王自营 邱绵浩 安钢 《中国电机工程学报》 EI CSCD 北大核心 2008年第32期89-95,共7页
直推式支持向量机(support vector machine,SVM)是基于已知样本建立对特定的未知样本进行有效识别的理论框架,与归纳式支持向量机相比,前者更经济、分类效果更佳。然而,直推式支持向量机的致命缺点是需要占用大量的训练时间,为此,提出... 直推式支持向量机(support vector machine,SVM)是基于已知样本建立对特定的未知样本进行有效识别的理论框架,与归纳式支持向量机相比,前者更经济、分类效果更佳。然而,直推式支持向量机的致命缺点是需要占用大量的训练时间,为此,提出了基于增量学习的支推式支持向量机训练算法,即把当前迭代训练得到的支持向量样本与新赋予类别标签的部分测试样本作为训练样本集参与下一次的迭代训目的是通过减少训练样本的数量以节约训练时间。同时,为确保算法的收敛性及分类准确率,在训练过程中引入了成对标注及错误回溯处理。实际的状态判别结果证明了该方法的有效性。 展开更多
关键词 直推式支持向量机 状态判别 旋转机械 增量学习 惩罚系数
下载PDF
一种改进的渐进直推式支持向量机分类学习算法 被引量:11
16
作者 廖东平 魏玺章 +1 位作者 黎湘 庄钊文 《信号处理》 CSCD 北大核心 2008年第2期213-218,共6页
基于支持向量机的直推式学习是统计学习理论中一个较新的研究领域。较之传统的归纳式学习方法而言,直推式学习往往更具有普遍性和实际意义。针对渐进直推式支持向量机学习算法存在的缺陷,提出了一种改进算法。该算法利用区域标注法取代... 基于支持向量机的直推式学习是统计学习理论中一个较新的研究领域。较之传统的归纳式学习方法而言,直推式学习往往更具有普遍性和实际意义。针对渐进直推式支持向量机学习算法存在的缺陷,提出了一种改进算法。该算法利用区域标注法取代前者的成对标注法,在继承了其渐进赋值和动态调整的规则的同时,提高了算法的速度;根据每个无标签样本的标注可信度自适应地对其赋予不同的影响因子,从而控制训练误差的传递和积累,提高了算法的性能。雷达实测数据实验结果表明该算法是有效的。 展开更多
关键词 统计学习理论(SLT) 直推式支持向量机(TSVM) 直推式学习 区域标注法 标注可信度
下载PDF
双模糊渐进直推式支持向量机算法 被引量:9
17
作者 彭新俊 王翼飞 《模式识别与人工智能》 EI CSCD 北大核心 2009年第4期560-566,共7页
直推式支持向量机(TSVM)是支持向量机与直推式学习相结合的重要算法.文中为TSVM中的临时标签样本引入双模糊隶属度以及样本修剪策略,构建一种双模糊渐进直推式支持向量机(BFPTSVM)算法.该算法可有效降低TSVM的计算复杂度及核存储量.模... 直推式支持向量机(TSVM)是支持向量机与直推式学习相结合的重要算法.文中为TSVM中的临时标签样本引入双模糊隶属度以及样本修剪策略,构建一种双模糊渐进直推式支持向量机(BFPTSVM)算法.该算法可有效降低TSVM的计算复杂度及核存储量.模拟实验表明该算法可取得比其他算法更好的分类性能,并且具有较快的收敛速度. 展开更多
关键词 直推式支持向量机(TSVM) 直推式学习 双模糊隶属度 双模糊支持向量机 样本修剪策略
原文传递
采用改进PTSVM的入侵检测研究 被引量:10
18
作者 刘宇 朱随江 刘宝旭 《计算机工程与应用》 CSCD 2012年第5期1-3,74,共4页
针对ISVM以及TSVM在基于异常的入侵检测中存在的问题,面向网络入侵数据特征改进了PTSVM算法,提出了有倾向的区域标注法,使其可以快速准确地对以无标签训练样本为主的入侵数据进行训练学习,得到接近最优解的分类超平面。实验证明基于改进... 针对ISVM以及TSVM在基于异常的入侵检测中存在的问题,面向网络入侵数据特征改进了PTSVM算法,提出了有倾向的区域标注法,使其可以快速准确地对以无标签训练样本为主的入侵数据进行训练学习,得到接近最优解的分类超平面。实验证明基于改进PTSVM的入侵检测算法在训练和检测速度上明显高于其他算法,对于攻击样本的检测率有很大提高。 展开更多
关键词 网络安全 入侵检测 半监督学习 渐进直推式支持向量机 有倾向区域标注
下载PDF
基于人工鱼群优化的直推式支持向量机分类算法 被引量:7
19
作者 齐芳 冯昕 徐其江 《计算机应用与软件》 CSCD 北大核心 2013年第3期294-296,共3页
提出基于人工鱼群优化的直推式支持向量机分类算法。该算法使直推式学习思想的优势得到充分的展现,在部分UCI标准数据集和20-Newgroups文本实验数据集上的对比实验表明,该算法较经典支持向量机算法和基于蚁群算法的直推式支持向量机算... 提出基于人工鱼群优化的直推式支持向量机分类算法。该算法使直推式学习思想的优势得到充分的展现,在部分UCI标准数据集和20-Newgroups文本实验数据集上的对比实验表明,该算法较经典支持向量机算法和基于蚁群算法的直推式支持向量机算法具有更高的分类性能。 展开更多
关键词 直推式学习 支持向量机 人工鱼群算法
下载PDF
直推式支持向量机在Web信息抽取中的应用研究 被引量:6
20
作者 肖建鹏 张来顺 任星 《计算机工程与应用》 CSCD 北大核心 2009年第2期147-149,共3页
直推式支持向量机是一种直接从已知样本出发对特定的未知样本进行识别的分类技术。在分析直推式支持向量机分类原理的基础上,提出一种基于直推式支持向量机的Web信息抽取方法,直接从分类的角度抽取Web信息。只需要提供少量标记样本就可... 直推式支持向量机是一种直接从已知样本出发对特定的未知样本进行识别的分类技术。在分析直推式支持向量机分类原理的基础上,提出一种基于直推式支持向量机的Web信息抽取方法,直接从分类的角度抽取Web信息。只需要提供少量标记样本就可以实现对大量未标注样本的分类标注,从而以分类的方式完成Web数据抽取任务。实验结果表明,使用这种方法进行Web信息抽取是有效性。 展开更多
关键词 WEB信息抽取 分类学习 直推式支持向量机
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部