期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
基于直推式支持向量机的图像分类算法 被引量:10
1
作者 沈新宇 许宏丽 官腾飞 《计算机应用》 CSCD 北大核心 2007年第6期1463-1464,1467,共3页
直推式支持向量机(TSVM)是在利用有标签样本的同时,考虑无标签样本对分类器的影响,并且结合支持向量机算法,实现一种高效的分类算法。它在包含少量有标签样本的训练集和大量无标签样本的测试集上,具有良好的效果。但是它有算法时间复杂... 直推式支持向量机(TSVM)是在利用有标签样本的同时,考虑无标签样本对分类器的影响,并且结合支持向量机算法,实现一种高效的分类算法。它在包含少量有标签样本的训练集和大量无标签样本的测试集上,具有良好的效果。但是它有算法时间复杂度比较高,需要预先设置正负例比例等不足。通过对原有算法的改进,新算法在时间复杂度上明显下降,同时算法效果没有明显的影响。 展开更多
关键词 支持向量机 直推式学习 图像分类
下载PDF
一种基于支持向量机的直推式学习算法 被引量:8
2
作者 赵英刚 陈奇 何钦铭 《江南大学学报(自然科学版)》 CAS 2006年第4期441-444,共4页
直推式支持向量机(Transductive Support Vector Machine,TSVM)是标准的支持向量机算法在半监督学习问题上的一种扩展,但已有的TSVM算法存在训练速度慢、回溯式学习多、学习性能不稳定等缺点,针对这些问题提出一种改进的直推式支持向量... 直推式支持向量机(Transductive Support Vector Machine,TSVM)是标准的支持向量机算法在半监督学习问题上的一种扩展,但已有的TSVM算法存在训练速度慢、回溯式学习多、学习性能不稳定等缺点,针对这些问题提出一种改进的直推式支持向量机算法———ITSVM,该算法较准确地确定了待训练的未标识样本中的正负样本数问题,有效解决了传统TSVM中过多的回溯式学习问题,同时该算法也无需利用过多的未标识训练样本,从而减轻了计算强度.实验表明,ITSVM相比TSVM在分类正确率、分类速度以及使用的样本规模上,都表现出了一定的优越性. 展开更多
关键词 支持向量机 直推式学习 半监督学习
下载PDF
一种针对弱标记的直推式多标记分类方法 被引量:13
3
作者 孔祥南 黎铭 +1 位作者 姜远 周志华 《计算机研究与发展》 EI CSCD 北大核心 2010年第8期1392-1399,共8页
多标记学习主要解决一个样本可以同时属于多个类别的问题,它广泛适用于图像场景分类、文本分类等任务.在传统的多标记学习中,分类器往往需要利用大量具有完整标记的训练样本才能获得较好的分类性能,然而,在很多现实应用中又往往只能获... 多标记学习主要解决一个样本可以同时属于多个类别的问题,它广泛适用于图像场景分类、文本分类等任务.在传统的多标记学习中,分类器往往需要利用大量具有完整标记的训练样本才能获得较好的分类性能,然而,在很多现实应用中又往往只能获得少量标记不完整的训练样本.为了更好地利用这些弱标记训练样本,提出一种针对弱标记的直推式多标记分类方法,它可以通过标记误差加权来补全样本标记,同时也能更好地利用弱标记样本提高分类性能.实验结果表明,该方法在弱标记情况下的图像场景分类任务上具有较好的性能提高. 展开更多
关键词 机器学习 多标记学习 弱标记 图像场景分类 直推式学习
下载PDF
一种直推式多标记文档分类方法 被引量:10
4
作者 姜远 佘俏俏 +1 位作者 黎铭 周志华 《计算机研究与发展》 EI CSCD 北大核心 2008年第11期1817-1823,共7页
真实世界的文档往往同时属于多个类别,因此,利用多标记学习技术进行文档分类是一个重要的研究方向.现有多标记文档分类方法需要利用大量有正确分类标记的文档才能获得好的分类性能,然而,在实际应用中往往只能得到少量的有标记文档作为... 真实世界的文档往往同时属于多个类别,因此,利用多标记学习技术进行文档分类是一个重要的研究方向.现有多标记文档分类方法需要利用大量有正确分类标记的文档才能获得好的分类性能,然而,在实际应用中往往只能得到少量的有标记文档作为分类所需的训练文档.出于利用未标记文档的想法,提出一种基于随机游走的直推式多标记文档分类方法,可以利用大量的未标记文档来辅助提高分类性能.实验结果表明,该方法的性能优于现有直推式多标记分类方法CNMF. 展开更多
关键词 文档分类 多标记学习 直推学习 未标记文档 随机游走
下载PDF
协同标注的直推式支持向量机算法 被引量:12
5
作者 杜红乐 滕少华 张燕 《小型微型计算机系统》 CSCD 北大核心 2016年第11期2443-2447,共5页
在直推式支持向量机中,迭代过程中样本标注错误会导致错误传递,影响下一次迭代中样本标注准确度,使得错误不断的被积累,造成最终分类超平面的偏移,另外在传统单个分类器下,提高样本标注准确度与提高算法训练速度之间是矛盾的,无法得到兼... 在直推式支持向量机中,迭代过程中样本标注错误会导致错误传递,影响下一次迭代中样本标注准确度,使得错误不断的被积累,造成最终分类超平面的偏移,另外在传统单个分类器下,提高样本标注准确度与提高算法训练速度之间是矛盾的,无法得到兼顾.针对此,本文把投票机制和协同思想引入到直推式支持向量机中,提出一种协同标注的直推式支持向量机算法,利用多个分类器的投票结果对样本进行标注,提高样本标注的准确度,利用多个分类器进行协同训练提高算法的训练速度.最后实验结果表明,所提出算法能够利用投票机制和协同思想提高最终分类器的分类精度和算法的训练速度. 展开更多
关键词 支持向量机 直推式学习 半监督学习 协同标注
下载PDF
基于SVDD的渐进直推式支持向量机学习算法 被引量:9
6
作者 薛贞霞 刘三阳 刘万里 《模式识别与人工智能》 EI CSCD 北大核心 2008年第6期721-727,共7页
针对半监督学习中渐进直推支持向量机(PTSVM)算法每次标注的样本数太少、训练速度慢、回溯式学习多、学习性能不稳定的问题,提出一种快速的渐进直推支持向量机学习算法.该算法利用支持向量的信息,基于支持向量域描述(SVDD)选择新标注、... 针对半监督学习中渐进直推支持向量机(PTSVM)算法每次标注的样本数太少、训练速度慢、回溯式学习多、学习性能不稳定的问题,提出一种快速的渐进直推支持向量机学习算法.该算法利用支持向量的信息,基于支持向量域描述(SVDD)选择新标注、无标签的样本点,以区域标注法代替 PTSVM 的成对标注法,不仅继承了其渐进赋值和动态调整的规则,而且在保持甚至提高算法精度的同时,大大提高算法速度.在人工模拟数据和真实数据上的实验结果表明该算法的有效性. 展开更多
关键词 半监督学习 支持向量机 直推式学习 支持向量域描述(SVDD)
原文传递
双模糊渐进直推式支持向量机算法 被引量:9
7
作者 彭新俊 王翼飞 《模式识别与人工智能》 EI CSCD 北大核心 2009年第4期560-566,共7页
直推式支持向量机(TSVM)是支持向量机与直推式学习相结合的重要算法.文中为TSVM中的临时标签样本引入双模糊隶属度以及样本修剪策略,构建一种双模糊渐进直推式支持向量机(BFPTSVM)算法.该算法可有效降低TSVM的计算复杂度及核存储量.模... 直推式支持向量机(TSVM)是支持向量机与直推式学习相结合的重要算法.文中为TSVM中的临时标签样本引入双模糊隶属度以及样本修剪策略,构建一种双模糊渐进直推式支持向量机(BFPTSVM)算法.该算法可有效降低TSVM的计算复杂度及核存储量.模拟实验表明该算法可取得比其他算法更好的分类性能,并且具有较快的收敛速度. 展开更多
关键词 直推式支持向量机(TSVM) 直推式学习 双模糊隶属度 双模糊支持向量机 样本修剪策略
原文传递
改进的渐进直推式支持向量机算法 被引量:7
8
作者 薛贞霞 刘三阳 刘万里 《系统工程理论与实践》 EI CSCD 北大核心 2009年第5期142-148,共7页
针对半监督学习中渐进直推支持向量机(Progressive Transductive Support Vector Machines, PTSVM)算法存在训练速度慢,回溯式学习多,学习性能不稳定的问题,提出一种改进的渐进直推支持向量机算法—IPTSVM.该算法利用支持向量的信息选... 针对半监督学习中渐进直推支持向量机(Progressive Transductive Support Vector Machines, PTSVM)算法存在训练速度慢,回溯式学习多,学习性能不稳定的问题,提出一种改进的渐进直推支持向量机算法—IPTSVM.该算法利用支持向量的信息选择新标注的无标签的样本点,结合增量支持向量机的迭代更新算法,继承渐进直推支持向量机渐进赋值和动态调整的规则,与PTSVM相比,不仅在一般情况下提高了分类的精度,而且大大提高了算法的速度.在人工模拟数据和真实数据上的实验结果表明了该算法的有效性. 展开更多
关键词 半监督学习 支持向量机 直推式学习 增量学习
原文传递
不均衡数据集下的入侵检测 被引量:5
9
作者 杜红乐 张燕 张林 《山东大学学报(理学版)》 CAS CSCD 北大核心 2016年第11期50-57,共8页
在直推式支持向量机(transductive support vector machine,TSVM)中,迭代过程中样本标注错误会导致错误传递,影响下一次迭代中样本标注准确度,使得错误不断地被积累,造成最终分类超平面的偏移。在不均衡数据集下,传统支持向量机(support... 在直推式支持向量机(transductive support vector machine,TSVM)中,迭代过程中样本标注错误会导致错误传递,影响下一次迭代中样本标注准确度,使得错误不断地被积累,造成最终分类超平面的偏移。在不均衡数据集下,传统支持向量机(support vector machine,SVM)对样本分类的错误率较高,导致TSVM在每次迭代中标注样本准确度不高。针对此,本文提出一种不均衡数据集下的直推式学习算法,该算法依据各类支持向量的密度分布关系动态计算各类的惩罚因子,提高每次迭代中样本标注的准确度,算法在继承渐进赋值和动态调整规则的基础上,减少分类超平面的偏移。最后,在KDD CUP99数据集上的仿真实验结果表明该算法能够提高TSVM在不均衡数据下的分类性能,降低误警率和漏报率。 展开更多
关键词 支持向量机 不均衡数据集 直推式学习 半监督学习 入侵检测
原文传递
一种基于直推判别字典学习的零样本分类方法 被引量:5
10
作者 冀中 孙涛 于云龙 《软件学报》 EI CSCD 北大核心 2017年第11期2961-2970,共10页
零样本分类的目标是对训练阶段未出现过的类别的样本进行识别和分类,其主要思路是,借助类别语义信息,将可见类别的知识转移到未见类别中.提出了一种直推式的字典学习方法,包含以下两个步骤:首先,提出一个判别字典学习模型,对带标签的可... 零样本分类的目标是对训练阶段未出现过的类别的样本进行识别和分类,其主要思路是,借助类别语义信息,将可见类别的知识转移到未见类别中.提出了一种直推式的字典学习方法,包含以下两个步骤:首先,提出一个判别字典学习模型,对带标签的可见类别样本的视觉特征和类别语义特征建立映射关系模型;然后,针对可见类别和未见类别不同引起的域偏移问题,提出了一个基于直推学习的修正模型.通过在3个基准数据集(Aw A,CUB和SUN)上的实验结果,证明了该方法的有效性和先进性. 展开更多
关键词 零样本分类 图像分类 字典学习 直推学习
下载PDF
Semi-supervised learning via manifold regularization 被引量:2
11
作者 MAO Yu ZHOU Yan-quan +2 位作者 LI Rui-fan WANG Xiao-jie ZHONG Yi-xin 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2012年第6期79-88,共10页
This paper proposes a novel graph-based transductive learning algorithm based on manifold regularization. First, the manifold regularization was introduced to probabilistic discriminant model for semi-supervised class... This paper proposes a novel graph-based transductive learning algorithm based on manifold regularization. First, the manifold regularization was introduced to probabilistic discriminant model for semi-supervised classification task. And then a variation of the expectation maximization (EM) algorithm was derived to solve the optimization problem, which leads to an iterative algorithm. Although our method is developed in probabilistic framework, there is no need to make assumption about the specific form of data distribution. Besides, the crucial updating formula has closed form. This method was evaluated for text categorization on two standard datasets, 20 news group and Reuters-21578. Experiments show that our approach outperforms the state-of-the-art graph-based transductive learning methods. 展开更多
关键词 manifold regularization semi-supervised learning transductive learning expectation maximization algorithm CLASSIFICATION text categorization
原文传递
基于聚类的直推式学习的性能分析 被引量:5
12
作者 张新 何苯 +1 位作者 罗铁坚 李东星 《软件学报》 EI CSCD 北大核心 2014年第12期2865-2876,共12页
近年来,Twitter搜索在社交网络领域引起越来越多学者的关注.尽管排序学习可以融合Twitter中丰富的特征,但是训练数据的匮乏,会降低排序学习的性能.直推式学习作为一种常用的半监督学习方法,在解决训练数据的稀少性中发挥着重要的作用.... 近年来,Twitter搜索在社交网络领域引起越来越多学者的关注.尽管排序学习可以融合Twitter中丰富的特征,但是训练数据的匮乏,会降低排序学习的性能.直推式学习作为一种常用的半监督学习方法,在解决训练数据的稀少性中发挥着重要的作用.由于在直推式学习的迭代过程中会生成噪音,基于聚类的直推式学习方法被提出.在基于聚类的直推式学习方法中有两个重要的参数,分别为聚类的阈值以及聚类文档的数量.在原有工作的基础上,提出使用另外一种不同的聚类算法.大量在标准TREC数据集Tweets11上的实验表明,聚类的阈值以及聚类过程中文档数量的选择都会对模型的检索性能产生影响.另外,也分析了基于聚类的直推式学习模型的鲁棒性在不同查询集上的表现.最后,引入名为簇凝聚度的质量控制因子,提出了一种基于聚类的自适应的直推式方法来实现Twitter检索.实验结果表明,基于聚类的自适应学习算法具有更好的鲁棒性. 展开更多
关键词 聚类 直推学习 Twitter检索 自适应 性能
下载PDF
面向锂电池少量循环的二维支持域直推式健康状态预测 被引量:1
13
作者 王一航 冯良骏 赵春晖 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第3期474-483,共10页
锂离子电池的健康状态(SOH)是反映电池老化程度的关键指标,但由于电池老化的非线性和不确定性使得SOH难以精确估计,并且受到电池数据收集的高时间成本和容量再生现象的影响,传统的数据驱动方法在历史充放电循环数较少时效果较差.针对上... 锂离子电池的健康状态(SOH)是反映电池老化程度的关键指标,但由于电池老化的非线性和不确定性使得SOH难以精确估计,并且受到电池数据收集的高时间成本和容量再生现象的影响,传统的数据驱动方法在历史充放电循环数较少时效果较差.针对上述问题,本文创新性地提出了一种二维支持域直推式学习(2D-RoSTL)建模思路,建立了数据由粗到细的精准划分方法,用于少量充放电循环下的SOH预测.一方面,考虑同型号多块电池的批次特性,利用历史数据和批次数据构造二维支持域扩充模型信息来源,提供了粗范围的大量可供选择的样本;另一方面,首次尝试以直推式学习的方式解决SOH预测的任务,利用离线和在线样本特征空间的信息,对每个样本进行细致划分,提升少量充放电循环情况下模型的预测可靠性.基于NASA的公开数据集,所提出的二维支持域直推式建模方法在4个电池上的预测误差均小于1.56%,实现了对锂电池充放电历史初期及再生点的精确预测. 展开更多
关键词 锂电池健康状态 少量充放电循环 二维支持域 直推式学习
下载PDF
多级特征增强的图表示学习模型 被引量:2
14
作者 冯耀 孔兵 +2 位作者 周丽华 包崇明 王崇云 《计算机工程与应用》 CSCD 北大核心 2023年第11期131-140,共10页
针对图数据的表示学习在推荐系统、链接预测等图下游任务已展现出重要的研究价值。然而目前主流的方法存在一些缺陷:图卷积网络的固定传播模式限制节点表示的语义表达能力,以及编码器-解码器结构中的正则化重建阻碍学习节点间的差异化特... 针对图数据的表示学习在推荐系统、链接预测等图下游任务已展现出重要的研究价值。然而目前主流的方法存在一些缺陷:图卷积网络的固定传播模式限制节点表示的语义表达能力,以及编码器-解码器结构中的正则化重建阻碍学习节点间的差异化特征,这些都可能导致节点表示不能很好适应图下游任务。为此,基于互信息最大化理论提出一种多级特征增强的图表示学习模型,能以无监督的方式生成高质量的节点表示。模型使用提取器保留节点原始属性中的差异化特征,利用注意力聚合器维持编码空间中节点分布的局部相关性和全局差异性,应用深度图信息最大化策略统一全局编码规则。实验结果证明,在几个基准图数据集上该模型在直推式学习和归纳式学习下的编码表现均超过了所有的主流对比基线。 展开更多
关键词 图表示学习 互信息最大化 无监督学习 直推式学习 归纳式学习
下载PDF
Inductive transfer learning for unlabeled target-domain via hybrid regularization 被引量:3
15
作者 ZHUANG FuZhen LUO Ping +1 位作者 HE Qing SHI ZhongZhi 《Chinese Science Bulletin》 SCIE EI CAS 2009年第14期2470-2478,共9页
Recent years have witnessed an increasing interest in transfer learning. This paper deals with the classification problem that the target-domain with a different distribution from the source-domain is totally unlabele... Recent years have witnessed an increasing interest in transfer learning. This paper deals with the classification problem that the target-domain with a different distribution from the source-domain is totally unlabeled, and aims to build an inductive model for unseen data. Firstly, we analyze the problem of class ratio drift in the previous work of transductive transfer learning, and propose to use a normalization method to move towards the desired class ratio. Furthermore, we develop a hybrid regularization framework for inductive transfer learning. It considers three factors, including the distribution geometry of the target-domain by manifold regularization, the entropy value of prediction probability by entropy regularization, and the class prior by expectation regularization. This framework is used to adapt the inductive model learnt from the source-domain to the target-domain. Finally, the experiments on the real-world text data show the effectiveness of our inductive method of transfer learning. Meanwhile, it can handle unseen test points. 展开更多
关键词 归纳学习 正规化 标签 杂交 归一化法 预测概率 文字资料 归纳法
原文传递
适于数据流组合分类的直推学习方法 被引量:2
16
作者 刁树民 王永利 《计算机应用》 CSCD 北大核心 2009年第6期1578-1581,共4页
在进行组合决策时,已有的组合分类方法需要对多个组合分类器均有效的公共已知标签训练样本。为了解决在没有已知标签样本的情况下数据流组合分类决策问题,提出一种基于约束学习的数据流组合分类器的融合策略。在判定测试样本上的决策时... 在进行组合决策时,已有的组合分类方法需要对多个组合分类器均有效的公共已知标签训练样本。为了解决在没有已知标签样本的情况下数据流组合分类决策问题,提出一种基于约束学习的数据流组合分类器的融合策略。在判定测试样本上的决策时,根据直推学习理论设计满足每一个局部分类器约束度量的方法,保证了约束的可行性,解决了分布式分类聚集时最大熵的直推扩展问题。测试数据集上的实验证明,与已有的直推学习方法相比,此方法可以获得更好的决策精度,可以应用于数据流组合分类的融合。 展开更多
关键词 数据流 基于约束学习 直推学习 最大熵 分布式组合分类
下载PDF
Progressive transductive learning pattern classification via single sphere
17
作者 Xue Zhenxia Liu Sanyang Liu Wanli 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第3期643-650,共8页
In many machine learning problems, a large amount of data is available but only a few of them can be labeled easily. This provides a research branch to effectively combine unlabeled and labeled data to infer the label... In many machine learning problems, a large amount of data is available but only a few of them can be labeled easily. This provides a research branch to effectively combine unlabeled and labeled data to infer the labels of unlabeled ones, that is, to develop transductive learning. In this article, based on Pattern classification via single sphere (SSPC), which seeks a hypersphere to separate data with the maximum separation ratio, a progressive transductive pattern classification method via single sphere (PTSSPC) is proposed to construct the classifier using both the labeled and unlabeled data. PTSSPC utilize the additional information of the unlabeled samples and obtain better classification performance than SSPC when insufficient labeled data information is available. Experiment results show the algorithm can yields better performance. 展开更多
关键词 pattern recognition semi-supervised learning transductive learning CLASSIFICATION support vector machine support vector domain description.
下载PDF
基于改进TSVM的未知网络应用识别算法 被引量:3
18
作者 李斌 李丽娟 《电子技术应用》 北大核心 2016年第9期95-98,共4页
针对训练集中出现未知网络应用样本的识别问题,提出一种基于改进的直推式支持向量机的未知网络应用识别算法,引入增类损失函数刻画在训练过程中新增的未知应用样本的损失代价,建立TSVM的优化问题并推导其求解过程,使得构造的分类模型能... 针对训练集中出现未知网络应用样本的识别问题,提出一种基于改进的直推式支持向量机的未知网络应用识别算法,引入增类损失函数刻画在训练过程中新增的未知应用样本的损失代价,建立TSVM的优化问题并推导其求解过程,使得构造的分类模型能够实现对未知类别样本的识别。通过实际网络数据集进行仿真分析,结果表明所提出的算法在识别未知网络应用的可行性和有效性方面均有良好表现。 展开更多
关键词 支持向量机 直推式学习 未知网络应用 流量识别
下载PDF
直推式多视图协同分割 被引量:3
19
作者 朱云峰 章毓晋 《电子与信息学报》 EI CSCD 北大核心 2011年第4期763-768,共6页
多视角拍摄条件下获取到含有同一刚性或静态目标多幅图像后,快速准确地在所有图像中分割出该目标是一个尚未被关注的问题。该文首次给出这个问题的数学描述,并借助图模型的描述方法,推导了它与传统的基于图割分割问题之间的关系。在求... 多视角拍摄条件下获取到含有同一刚性或静态目标多幅图像后,快速准确地在所有图像中分割出该目标是一个尚未被关注的问题。该文首次给出这个问题的数学描述,并借助图模型的描述方法,推导了它与传统的基于图割分割问题之间的关系。在求解该问题时,该文提出了迭代式协同直推优化算法,算法思想是将优化目标函数拆分为图像空间和3维空间分割两个子优化问题,利用图割和谱聚类分割的方法迭代求解两个子优化问题,并在迭代过程中设计传播、过滤、投票处理引入两个空间标签一致性约束,算法收敛时同时得到图像空间和3维空间的分割结果。最后,使用实际图像序列实验得出算法的平均误判率为3.4%,比较讨论和改进思路一并给出。 展开更多
关键词 图像处理 直推式学习 图割 谱聚类分割 多视角协同分割
下载PDF
基于直推式学习的中文情感词极性判别 被引量:3
20
作者 金宇 朱洪波 +2 位作者 王亚强 陈黎 于中华 《计算机工程与应用》 CSCD 北大核心 2011年第34期164-167,共4页
态度挖掘是近年来文本挖掘领域的热点课题之一,旨在发现文本中作者的主观态度倾向,为基于舆情的决策过程提供支持。目前已有的态度挖掘算法绝大多数都基于情感词典来识别情感词,在此基础上判别句子或文本的总体态度倾向。然而,手工构造... 态度挖掘是近年来文本挖掘领域的热点课题之一,旨在发现文本中作者的主观态度倾向,为基于舆情的决策过程提供支持。目前已有的态度挖掘算法绝大多数都基于情感词典来识别情感词,在此基础上判别句子或文本的总体态度倾向。然而,手工构造和维护一部完善的情感词典是不现实的。对中文情感词的极性判别问题进行了研究,提出了基于直推式学习的中文情感词极性判别算法。该算法以少量情感词为种子,利用词典中词汇的解释信息,直推出其他词的情感极性。与使用相同情感种子词的解释信息作为训练数据的有监督学习算法相比,直推式学习算法的识别精度提高了20%左右。 展开更多
关键词 态度挖掘 情感词识别 极性判别 直推式学习 词典解释
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部