Long non-coding RNAs (ineRNAs) play important roles in cancer. They are involved in chromatin remodeling, as well as transcriptional and post-transcriptional regulation, through a vari- ety of chromatin-based mechan...Long non-coding RNAs (ineRNAs) play important roles in cancer. They are involved in chromatin remodeling, as well as transcriptional and post-transcriptional regulation, through a vari- ety of chromatin-based mechanisms and via cross-talk with other RNA species, lncRNAs can func- tion as decoys, scaffolds, and enhancer RNAs. This review summarizes the characteristics of lncRNAs, including their roles, functions, and working mechanisms, describes methods for identi- fying and annotating lncRNAs, and discusses future opportunities for lncRNA-based therapies using antisense oligonucleotides.展开更多
植物花器官的发育和开花是植物生殖发育中最重要的过程,植物在长期的进化过程中产生了春化(低温)途径、自主途径、光周期途径以及不依赖于光温环境条件的赤霉素信号途径来适应多变的环境和调控植物开花过程。本文综述了模式植物拟南芥中...植物花器官的发育和开花是植物生殖发育中最重要的过程,植物在长期的进化过程中产生了春化(低温)途径、自主途径、光周期途径以及不依赖于光温环境条件的赤霉素信号途径来适应多变的环境和调控植物开花过程。本文综述了模式植物拟南芥中由LEAFY(LFY)、CONSTANS(CO)、FLOWERING LOCUSC(FLC)、FLOW ERING LOCUS T(FT)和SUPPRESSOR OF OVEREXPRESSION OF CO1(SOC1)等基因构成的双子叶植物响应光温条件变化的开花调控网络;以及大麦、小麦中由VERNALIZATION1(VRN1)、VRN2、ODD-SOC2(OS2)和拟南芥CO、FT同源基因构成的禾本科植物开花调控网络。其中最重要的是转录调控因子MADS-box基因FLC、SOC1、VRN1和OS2,并发现组蛋白的乙酰化/脱乙酰化,赖氨酸的甲基化/脱甲基化在调控FLC、VRN1染色质活性状态及基因表达,从而产生开花控制的机理。这些研究发现将有助于对具有重要经济价值的单双子叶植物,通过生物技术手段改良其品种特性以应对非生物逆境,特别是低温胁迫的指导。展开更多
The molecular mechanisms for NF-κB signaling transduction and transcription have been the most attractive subjects for both basic research and pharmaceutical industries due to its important roles in both physiologica...The molecular mechanisms for NF-κB signaling transduction and transcription have been the most attractive subjects for both basic research and pharmaceutical industries due to its important roles in both physiological and pathogenesis,particularly the close association of dysregulated NF-κB with tumorgenesis and inflammation.Several novel intracellular molecular events that regulate NF-κB activity have been described recently,including the discovery of an alternative signaling pathway that appears inducing a specific subset genes involved in adoptive immune response.Multi-level and multi-dimensional regulation of NF-κB activity by phosphorylation and acetylation modifications have unveiled and became the hottest targets for potentially tissue specific molecular interventions.Another emerging mechanism for NF-κB-responsive gene's regulation where NF-κB participates the transcriptional regulation independent of its cognate regulatory binding site within the target gene's promoter but facilitating the transaction activity of other involved transcription factors, that implicated an novel transcriptional activities for NF-κB.Thus,the current review will focus on these recent progresses that have been made on NF-κB signaling transduction and transcription.Cellular & Molecular Immunology.2004;1(6):425-435.展开更多
Liver fibrosis continues to be a major health problem worldwide due to lack of effective therapy.If the etiology cannot be eliminated,liver fibrosis progresses to cirrhosis and eventually to liver failure or malignanc...Liver fibrosis continues to be a major health problem worldwide due to lack of effective therapy.If the etiology cannot be eliminated,liver fibrosis progresses to cirrhosis and eventually to liver failure or malignancy;both are associated with a fatal outcome.Liver transplantation,the only curative therapy,is still mostly unavailable.Liver fibrosis was shown to be a reversible process;however,complete reversibility remains debatable.Recently,the molecular markers of liver fibrosis were shown to be transmitted across generations.Epigenetic mechanisms including DNA methylation,histone posttranslational modifications and noncoding RNA have emerged as major determinants of gene expression during liver fibrogenesis and carcinogenesis.Furthermore,epigenetic mechanisms have been shown to be transmitted through mitosis and meiosis to daughter cells and subsequent generations.However,the exact epigenetic regulation of complete liver fibrosis resolution and inheritance has not been fully elucidated.This communication will highlight the recent advances in the search for delineating the mechanisms governing resolution of liver fibrosis and the potential for multigenerational and transgenerational transmission of fibrosis markers.The fact that epigenetic changes,unlike genetic mutations,are reversible and can be modulated pharmacologically underscores the unique opportunity to develop effective therapy to completely reverse liver fibrosis,to prevent the development of malignancy and to regulate heritability of fibrosis phenotype.展开更多
基金supported by the National Research Foundation(NRF)of Singapore through an NRF fellowship awarded to MJF(Grant No.NRFF2012-054)NTU startup funds+3 种基金Yale-NUS startup funds awarded to MJFsupported by funds given to the Cancer Science Institute(CSI),National University of Singapore(NUS)by the NRF and the Ministry of Education-Singapore under the Research Center of Excellence fundingsupported by the RNA Biology Center at the CSI,NUS,as part of the funding under the Tier 3 grants of the Ministry of Education,Singapore
文摘Long non-coding RNAs (ineRNAs) play important roles in cancer. They are involved in chromatin remodeling, as well as transcriptional and post-transcriptional regulation, through a vari- ety of chromatin-based mechanisms and via cross-talk with other RNA species, lncRNAs can func- tion as decoys, scaffolds, and enhancer RNAs. This review summarizes the characteristics of lncRNAs, including their roles, functions, and working mechanisms, describes methods for identi- fying and annotating lncRNAs, and discusses future opportunities for lncRNA-based therapies using antisense oligonucleotides.
文摘植物花器官的发育和开花是植物生殖发育中最重要的过程,植物在长期的进化过程中产生了春化(低温)途径、自主途径、光周期途径以及不依赖于光温环境条件的赤霉素信号途径来适应多变的环境和调控植物开花过程。本文综述了模式植物拟南芥中由LEAFY(LFY)、CONSTANS(CO)、FLOWERING LOCUSC(FLC)、FLOW ERING LOCUS T(FT)和SUPPRESSOR OF OVEREXPRESSION OF CO1(SOC1)等基因构成的双子叶植物响应光温条件变化的开花调控网络;以及大麦、小麦中由VERNALIZATION1(VRN1)、VRN2、ODD-SOC2(OS2)和拟南芥CO、FT同源基因构成的禾本科植物开花调控网络。其中最重要的是转录调控因子MADS-box基因FLC、SOC1、VRN1和OS2,并发现组蛋白的乙酰化/脱乙酰化,赖氨酸的甲基化/脱甲基化在调控FLC、VRN1染色质活性状态及基因表达,从而产生开花控制的机理。这些研究发现将有助于对具有重要经济价值的单双子叶植物,通过生物技术手段改良其品种特性以应对非生物逆境,特别是低温胁迫的指导。
文摘The molecular mechanisms for NF-κB signaling transduction and transcription have been the most attractive subjects for both basic research and pharmaceutical industries due to its important roles in both physiological and pathogenesis,particularly the close association of dysregulated NF-κB with tumorgenesis and inflammation.Several novel intracellular molecular events that regulate NF-κB activity have been described recently,including the discovery of an alternative signaling pathway that appears inducing a specific subset genes involved in adoptive immune response.Multi-level and multi-dimensional regulation of NF-κB activity by phosphorylation and acetylation modifications have unveiled and became the hottest targets for potentially tissue specific molecular interventions.Another emerging mechanism for NF-κB-responsive gene's regulation where NF-κB participates the transcriptional regulation independent of its cognate regulatory binding site within the target gene's promoter but facilitating the transaction activity of other involved transcription factors, that implicated an novel transcriptional activities for NF-κB.Thus,the current review will focus on these recent progresses that have been made on NF-κB signaling transduction and transcription.Cellular & Molecular Immunology.2004;1(6):425-435.
基金Egyptian Science and Technology Development Fund under Project 1550
文摘Liver fibrosis continues to be a major health problem worldwide due to lack of effective therapy.If the etiology cannot be eliminated,liver fibrosis progresses to cirrhosis and eventually to liver failure or malignancy;both are associated with a fatal outcome.Liver transplantation,the only curative therapy,is still mostly unavailable.Liver fibrosis was shown to be a reversible process;however,complete reversibility remains debatable.Recently,the molecular markers of liver fibrosis were shown to be transmitted across generations.Epigenetic mechanisms including DNA methylation,histone posttranslational modifications and noncoding RNA have emerged as major determinants of gene expression during liver fibrogenesis and carcinogenesis.Furthermore,epigenetic mechanisms have been shown to be transmitted through mitosis and meiosis to daughter cells and subsequent generations.However,the exact epigenetic regulation of complete liver fibrosis resolution and inheritance has not been fully elucidated.This communication will highlight the recent advances in the search for delineating the mechanisms governing resolution of liver fibrosis and the potential for multigenerational and transgenerational transmission of fibrosis markers.The fact that epigenetic changes,unlike genetic mutations,are reversible and can be modulated pharmacologically underscores the unique opportunity to develop effective therapy to completely reverse liver fibrosis,to prevent the development of malignancy and to regulate heritability of fibrosis phenotype.