With the new promising technique of mobile edge computing (MEC) emerging, by utilizing the edge computing and cloud computing capabilities to realize the HTTP adaptive video streaming transmission in MEC-based 5G netw...With the new promising technique of mobile edge computing (MEC) emerging, by utilizing the edge computing and cloud computing capabilities to realize the HTTP adaptive video streaming transmission in MEC-based 5G networks has been widely studied. Although many works have been done, most of the existing works focus on the issues of network resource utilization or the quality of experience (QoE) promotion, while the energy efficiency is largely ignored. In this paper, different from previous works, in order to realize the energy efficiency for video transmission in MEC-enhanced 5G networks, we propose a joint caching and transcoding schedule strategy for HTTP adaptive video streaming transmission by taking the caching and transcoding into consideration. We formulate the problem of energy-efficient joint caching and transcoding as an integer programming problem to minimize the system energy consumption. Due to solving the optimization problem brings huge computation complexity, therefore, to make the optimization problem tractable, a heuristic algorithm based on simulated annealing algorithm is proposed to iteratively reach the global optimum solution with a lower complexity and higher accuracy. Finally, numerical simulation results are illustrated to demonstrated that our proposed scheme brings an excellent performance.展开更多
Video transcoding is to create multiple representations of a video for content adaptation.It is deemed as a core technique in Adaptive BitRate(ABR)streaming.How to manage video transcoding affects the performance of A...Video transcoding is to create multiple representations of a video for content adaptation.It is deemed as a core technique in Adaptive BitRate(ABR)streaming.How to manage video transcoding affects the performance of ABR streaming in various aspects,including operational cost,streaming delays,Quality of Experience(QoE),etc.Therefore,the problems of implementing video transcoding in ABR streaming must be systematically studied to improve the overall performance of the streaming services.These problems become more worthy of investigation with the emergence of the edge-cloud continuum,which makes the resource allocation for video transcoding more complicated.To this end,this paper provides an investigation of the main technical problems related to video transcoding in ABR streaming,including designing a rate profile for video transcoding,providing resources for video transcoding in clouds,and caching multi-bitrate video contents in networks,etc.We analyze these problems from the perspective of resource allocation in the edge-cloud continuum and cast them into resource and Quality of Service(QoS)optimization problems.The goal is to minimize resource consumption while guaranteeing the QoS for ABR streaming.We also discuss some promising research directions for the ABR streaming services.展开更多
基金support by the Major National Science and Technology Projects (No. 2018ZX03001014-003)
文摘With the new promising technique of mobile edge computing (MEC) emerging, by utilizing the edge computing and cloud computing capabilities to realize the HTTP adaptive video streaming transmission in MEC-based 5G networks has been widely studied. Although many works have been done, most of the existing works focus on the issues of network resource utilization or the quality of experience (QoE) promotion, while the energy efficiency is largely ignored. In this paper, different from previous works, in order to realize the energy efficiency for video transmission in MEC-enhanced 5G networks, we propose a joint caching and transcoding schedule strategy for HTTP adaptive video streaming transmission by taking the caching and transcoding into consideration. We formulate the problem of energy-efficient joint caching and transcoding as an integer programming problem to minimize the system energy consumption. Due to solving the optimization problem brings huge computation complexity, therefore, to make the optimization problem tractable, a heuristic algorithm based on simulated annealing algorithm is proposed to iteratively reach the global optimum solution with a lower complexity and higher accuracy. Finally, numerical simulation results are illustrated to demonstrated that our proposed scheme brings an excellent performance.
基金supported in part by the Natural Science Foundation of Jiangsu Province under Grant BK20200486.
文摘Video transcoding is to create multiple representations of a video for content adaptation.It is deemed as a core technique in Adaptive BitRate(ABR)streaming.How to manage video transcoding affects the performance of ABR streaming in various aspects,including operational cost,streaming delays,Quality of Experience(QoE),etc.Therefore,the problems of implementing video transcoding in ABR streaming must be systematically studied to improve the overall performance of the streaming services.These problems become more worthy of investigation with the emergence of the edge-cloud continuum,which makes the resource allocation for video transcoding more complicated.To this end,this paper provides an investigation of the main technical problems related to video transcoding in ABR streaming,including designing a rate profile for video transcoding,providing resources for video transcoding in clouds,and caching multi-bitrate video contents in networks,etc.We analyze these problems from the perspective of resource allocation in the edge-cloud continuum and cast them into resource and Quality of Service(QoS)optimization problems.The goal is to minimize resource consumption while guaranteeing the QoS for ABR streaming.We also discuss some promising research directions for the ABR streaming services.