磁浮列车的速度跟踪控制具有典型的非线性、大时滞、多约束等特点,制约磁浮列车在节能运行、智能驾驶和精准停车等方向的发展。针对磁浮列车的速度跟踪控制的大时滞问题,首先运用自抗扰控制理论,改进并分解控制器结构,推演分析其改进后...磁浮列车的速度跟踪控制具有典型的非线性、大时滞、多约束等特点,制约磁浮列车在节能运行、智能驾驶和精准停车等方向的发展。针对磁浮列车的速度跟踪控制的大时滞问题,首先运用自抗扰控制理论,改进并分解控制器结构,推演分析其改进后的传递函数;其次,对控制系统结构进行了优化,并在低频域对控制系统进行传递函数等效;第三,基于等效传递函数,提出1阶惯性环节加时滞环节(First order plus time delay,FOPTD)模型;第四,基于FOPTD模型,提出改进自抗扰控制器的参数调整方法;最后,在Simulink仿真环境下,搭建了磁浮列车速度跟踪系统。验证了基于改进自抗扰控制器的列车速度跟踪系统对正弦信号的跟踪能力,并比较了其与基于其他2种控制器(常规自抗扰控制器、2自由度比例-积分-微分控制器)(Two-Degree-of-Freedom Proportion-Integral-Derivative Controller,2DOF-PID)的列车速度跟踪系统的抗阶跃扰动能力,同时,在具体算例中,对比了改进自抗扰控制器与常规自抗扰控制器、2DOF-PID跟踪目标速度曲线效果,并进行了误差分析。仿真结果表明:在相同路况条件下,相比于基于其他2种控制器的磁浮列车速度跟踪系统,本文设计的磁浮列车速度跟踪系统能够在不同路段精准跟踪目标速度曲线。该控制方法对其他运动控制问题的学术研究和工程应用也具有很好的参考价值。展开更多
This paper deals with both the leading train and the following train in a train tracking under a four-aspect fixed autoblock system in order to study the optimum operating strategy for energy saving. After analyzing t...This paper deals with both the leading train and the following train in a train tracking under a four-aspect fixed autoblock system in order to study the optimum operating strategy for energy saving. After analyzing the working principle of the four-aspect fixed autoblock system, an energy-saving control model is created based on the dynamics equation of the Wains. In addition to safety, energy consumption and time error are the main concerns of the model. Based on this model, dynamic speed constraints of the following train are proposed, defined by the leading gain dynamically. At the same time, the static speed constraints defined by the line conditions are also taken into account. The parallel genetic algorithm is used to search the optimum operating strategy. In order to simplify the solving process, the external punishment function is adopted to transform this problem with constraints to the one without constraints. By using the real number coding and the strategy of dividing ramps into three parts, the convergence of GA is accelerated and the length of chromosomes is shortened. The simulation result from a four-aspect fixed autoblock system simulation platform shows that the method can reduce the energy consumption effectively in the premise of ensuring safety and punctuality.展开更多
文摘磁浮列车的速度跟踪控制具有典型的非线性、大时滞、多约束等特点,制约磁浮列车在节能运行、智能驾驶和精准停车等方向的发展。针对磁浮列车的速度跟踪控制的大时滞问题,首先运用自抗扰控制理论,改进并分解控制器结构,推演分析其改进后的传递函数;其次,对控制系统结构进行了优化,并在低频域对控制系统进行传递函数等效;第三,基于等效传递函数,提出1阶惯性环节加时滞环节(First order plus time delay,FOPTD)模型;第四,基于FOPTD模型,提出改进自抗扰控制器的参数调整方法;最后,在Simulink仿真环境下,搭建了磁浮列车速度跟踪系统。验证了基于改进自抗扰控制器的列车速度跟踪系统对正弦信号的跟踪能力,并比较了其与基于其他2种控制器(常规自抗扰控制器、2自由度比例-积分-微分控制器)(Two-Degree-of-Freedom Proportion-Integral-Derivative Controller,2DOF-PID)的列车速度跟踪系统的抗阶跃扰动能力,同时,在具体算例中,对比了改进自抗扰控制器与常规自抗扰控制器、2DOF-PID跟踪目标速度曲线效果,并进行了误差分析。仿真结果表明:在相同路况条件下,相比于基于其他2种控制器的磁浮列车速度跟踪系统,本文设计的磁浮列车速度跟踪系统能够在不同路段精准跟踪目标速度曲线。该控制方法对其他运动控制问题的学术研究和工程应用也具有很好的参考价值。
基金supported by the National Science & Technology Pillar Program during the Eleventh Five-Year Plan Period of China (No.2009BAG12A05)
文摘This paper deals with both the leading train and the following train in a train tracking under a four-aspect fixed autoblock system in order to study the optimum operating strategy for energy saving. After analyzing the working principle of the four-aspect fixed autoblock system, an energy-saving control model is created based on the dynamics equation of the Wains. In addition to safety, energy consumption and time error are the main concerns of the model. Based on this model, dynamic speed constraints of the following train are proposed, defined by the leading gain dynamically. At the same time, the static speed constraints defined by the line conditions are also taken into account. The parallel genetic algorithm is used to search the optimum operating strategy. In order to simplify the solving process, the external punishment function is adopted to transform this problem with constraints to the one without constraints. By using the real number coding and the strategy of dividing ramps into three parts, the convergence of GA is accelerated and the length of chromosomes is shortened. The simulation result from a four-aspect fixed autoblock system simulation platform shows that the method can reduce the energy consumption effectively in the premise of ensuring safety and punctuality.