This paper presents a cellular automaton model for single-lane traffic flow. On the basis of the Nagel-Schreckenberg (NS) model, it further considers the effect of headway-distance between two successive cars on the...This paper presents a cellular automaton model for single-lane traffic flow. On the basis of the Nagel-Schreckenberg (NS) model, it further considers the effect of headway-distance between two successive cars on the randomization of the latter one. In numerical simulations, this model shows the following characteristics. (1) With a simple structure, this model succeeds in reproducing the hysteresis effect, which is absent in the NS model. (2) Compared with the slow-tostart models, this model exhibits a local fundamental diagram which is more consistent to empirical observations. (3) This model has much higher efficiency in dissolving congestions compared with the so-called NS model with velocitydependent randomization (VDR model). (4) This model is more robust when facing traffic obstructions. It can resist much longer shock times and has much shorter relaxation times on the other hand. To summarize, compared with the existing models, this model is quite simple in structure, but has good characteristics.展开更多
In this paper, we use the stochastic Nagel-Schreckenberg (NaSch) model to investigate the influence of a special right-turning lane connecting two main roads on the capacity of a signalized road intersection. It is ...In this paper, we use the stochastic Nagel-Schreckenberg (NaSch) model to investigate the influence of a special right-turning lane connecting two main roads on the capacity of a signalized road intersection. It is found that the magnitude of right-turning traffic flow and the linking position of the special right-turning lane can greatly influence the capacity of the signalized road intersection. The relation between traffic flow and entering probability for different distances between the entrance (exit) of the special right-turning lane and the road intersection is simulated and analysed. The corresponding spatiotemporal pattern and phase diagram on different sections of the main road are given under the condition of close proximity to the signalized road intersection, stop-and-go traffic occur and obstruct the intersection. On the contrary, unchanged flux is maintained as the distance exceeds a critical values. All the studies indicate that setting a special right-turning lane by choosing a suitable location near a signalized road intersection can relieve the load of current traffic on the main road and maintain traffic flow.展开更多
基金supported by the National Basic Research Program of China (973 Program No 2006CB705500)the National Natural Science Foundation of China (Grant Nos 10635040, 10532060, 10472116 and 70271070)+2 种基金the Special Research Funds for Theoretical Physics Frontier Problems (NSFC Nos 10547004 and A0524701)the President Funding of Chinese Academy of Sciencethe Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘This paper presents a cellular automaton model for single-lane traffic flow. On the basis of the Nagel-Schreckenberg (NS) model, it further considers the effect of headway-distance between two successive cars on the randomization of the latter one. In numerical simulations, this model shows the following characteristics. (1) With a simple structure, this model succeeds in reproducing the hysteresis effect, which is absent in the NS model. (2) Compared with the slow-tostart models, this model exhibits a local fundamental diagram which is more consistent to empirical observations. (3) This model has much higher efficiency in dissolving congestions compared with the so-called NS model with velocitydependent randomization (VDR model). (4) This model is more robust when facing traffic obstructions. It can resist much longer shock times and has much shorter relaxation times on the other hand. To summarize, compared with the existing models, this model is quite simple in structure, but has good characteristics.
基金Project supported by the National Basic Research Program of China (Grant No 2006CB705500)the National Natural Science Foundation of China (Grant Nos 10662002, 10865001 and 10532060)+1 种基金the Special Foundation for the New Century Talents Program of Guangxi Zhuang Autonomous Region, China (Grant No 2005205)the Graduate Student Innovation Program of Guangxi Zhuang Autonomous Region, China (Grant No T32070)
文摘In this paper, we use the stochastic Nagel-Schreckenberg (NaSch) model to investigate the influence of a special right-turning lane connecting two main roads on the capacity of a signalized road intersection. It is found that the magnitude of right-turning traffic flow and the linking position of the special right-turning lane can greatly influence the capacity of the signalized road intersection. The relation between traffic flow and entering probability for different distances between the entrance (exit) of the special right-turning lane and the road intersection is simulated and analysed. The corresponding spatiotemporal pattern and phase diagram on different sections of the main road are given under the condition of close proximity to the signalized road intersection, stop-and-go traffic occur and obstruct the intersection. On the contrary, unchanged flux is maintained as the distance exceeds a critical values. All the studies indicate that setting a special right-turning lane by choosing a suitable location near a signalized road intersection can relieve the load of current traffic on the main road and maintain traffic flow.