High-speed trains(HSTs)have the advantages of comfort,efficiency,and convenience and have gradually become the mainstream means of transportation.As the operating scale of HSTs continues to increase,ensuring their saf...High-speed trains(HSTs)have the advantages of comfort,efficiency,and convenience and have gradually become the mainstream means of transportation.As the operating scale of HSTs continues to increase,ensuring their safety and reliability has become more imperative.As the core component of HST,the reliability of the traction system has a substantially influence on the train.During the long-term operation of HSTs,the core components of the traction system will inevitably experience different degrees of performance degradation and cause various failures,thus threatening the running safety of the train.Therefore,performing fault monitoring and diagnosis on the traction system of the HST is necessary.In recent years,machine learning has been widely used in various pattern recognition tasks and has demonstrated an excellent performance in traction system fault diagnosis.Machine learning has made considerably advancements in traction system fault diagnosis;however,a comprehensive systematic review is still lacking in this field.This paper primarily aims to review the research and application of machine learning in the field of traction system fault diagnosis and assumes the future development blueprint.First,the structure and function of the HST traction system are briefly introduced.Then,the research and application of machine learning in traction system fault diagnosis are comprehensively and systematically reviewed.Finally,the challenges for accurate fault diagnosis under actual operating conditions are revealed,and the future research trends of machine learning in traction systems are discussed.展开更多
利用支持向量机采用的结构风险最优化准则、预测能力强、鲁棒性好等优点,研究了最小二乘支持向量机(Least Squares Support Vector Machines,LS-SVM)回归算法在曳引机故障预测中的应用。提出了一种自动搜寻最优参数方法,对参数和进行寻...利用支持向量机采用的结构风险最优化准则、预测能力强、鲁棒性好等优点,研究了最小二乘支持向量机(Least Squares Support Vector Machines,LS-SVM)回归算法在曳引机故障预测中的应用。提出了一种自动搜寻最优参数方法,对参数和进行寻优,避免了人工选择的盲目性,提高了算法的效率。通过将LS-SVM和RBF神经网络进行对比实验,得出在相同训练样本条件下,LS-SVM可以取得比RBF更好的预测精度和预测速度,更加适合于现场实际应用。最后将LS-SVM模型用于曳引机振动信号的时域分量预测中,预测的平均相对误差小于5%,取得了较高的预测精度。展开更多
基金supported by the National Natural Science Foundation of China(Grant No.71731008)the Beijing Municipal Natural Science Foundation-Rail Transit Joint Research Program(Grant No.L191022)the Zhibo Lucchini Railway Equipment Co.,Ltd.
文摘High-speed trains(HSTs)have the advantages of comfort,efficiency,and convenience and have gradually become the mainstream means of transportation.As the operating scale of HSTs continues to increase,ensuring their safety and reliability has become more imperative.As the core component of HST,the reliability of the traction system has a substantially influence on the train.During the long-term operation of HSTs,the core components of the traction system will inevitably experience different degrees of performance degradation and cause various failures,thus threatening the running safety of the train.Therefore,performing fault monitoring and diagnosis on the traction system of the HST is necessary.In recent years,machine learning has been widely used in various pattern recognition tasks and has demonstrated an excellent performance in traction system fault diagnosis.Machine learning has made considerably advancements in traction system fault diagnosis;however,a comprehensive systematic review is still lacking in this field.This paper primarily aims to review the research and application of machine learning in the field of traction system fault diagnosis and assumes the future development blueprint.First,the structure and function of the HST traction system are briefly introduced.Then,the research and application of machine learning in traction system fault diagnosis are comprehensively and systematically reviewed.Finally,the challenges for accurate fault diagnosis under actual operating conditions are revealed,and the future research trends of machine learning in traction systems are discussed.
文摘利用支持向量机采用的结构风险最优化准则、预测能力强、鲁棒性好等优点,研究了最小二乘支持向量机(Least Squares Support Vector Machines,LS-SVM)回归算法在曳引机故障预测中的应用。提出了一种自动搜寻最优参数方法,对参数和进行寻优,避免了人工选择的盲目性,提高了算法的效率。通过将LS-SVM和RBF神经网络进行对比实验,得出在相同训练样本条件下,LS-SVM可以取得比RBF更好的预测精度和预测速度,更加适合于现场实际应用。最后将LS-SVM模型用于曳引机振动信号的时域分量预测中,预测的平均相对误差小于5%,取得了较高的预测精度。