期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Unsupervised Dialogue State Tracking for End-to-End Task-Oriented Dialogue with a Multi-Span Prediction Network
1
作者 刘庆斌 何世柱 +2 位作者 刘操 刘康 赵军 《Journal of Computer Science & Technology》 SCIE EI CSCD 2023年第4期834-852,共19页
This paper focuses on end-to-end task-oriented dialogue systems,which jointly handle dialogue state tracking(DST)and response generation.Traditional methods usually adopt a supervised paradigm to learn DST from a manu... This paper focuses on end-to-end task-oriented dialogue systems,which jointly handle dialogue state tracking(DST)and response generation.Traditional methods usually adopt a supervised paradigm to learn DST from a manually labeled corpus.However,the annotation of the corpus is costly,time-consuming,and cannot cover a wide range of domains in the real world.To solve this problem,we propose a multi-span prediction network(MSPN)that performs unsupervised DST for end-to-end task-oriented dialogue.Specifically,MSPN contains a novel split-merge copy mechanism that captures long-term dependencies in dialogues to automatically extract multiple text spans as keywords.Based on these keywords,MSPN uses a semantic distance based clustering approach to obtain the values of each slot.In addition,we propose an ontology-based reinforcement learning approach,which employs the values of each slot to train MSPN to generate relevant values.Experimental results on single-domain and multi-domain task-oriented dialogue datasets show that MSPN achieves state-of-the-art performance with significant improvements.Besides,we construct a new Chinese dialogue dataset MeDial in the low-resource medical domain,which further demonstrates the adaptability of MSPN. 展开更多
关键词 end-to-end task-oriented dialogue dialogue state tracking(dst) unsupervised learning reinforcement learning
原文传递
基于槽位相关信息提取的对话状态追踪模型
2
作者 石利锋 倪郑威 《计算机应用》 CSCD 北大核心 2023年第5期1430-1437,共8页
对话状态追踪(DST)是任务型对话系统中一个重要的模块,但现有的基于开放词表的DST模型没有充分利用槽位的相关信息以及数据集本身的结构信息。针对上述问题,提出基于槽位相关信息提取的DST模型SCELDST(SCE and LOW for Dialogue State T... 对话状态追踪(DST)是任务型对话系统中一个重要的模块,但现有的基于开放词表的DST模型没有充分利用槽位的相关信息以及数据集本身的结构信息。针对上述问题,提出基于槽位相关信息提取的DST模型SCELDST(SCE and LOW for Dialogue State Tracking)。首先,构建槽位相关信息提取器(SCE),利用注意力机制学习槽位之间的相关信息;然后,在训练过程中应用学习最优样本权重(LOW)策略,在未大幅增加训练时间的前提下,加强模型对数据集信息的利用;最后,优化模型细节,搭建完整的SCEL-DST模型。实验结果表明,SCE和LOW对SCEL-DST模型性能的提升至关重要,该模型在两个实验数据集上均取得了更高的联合目标准确率,其中在MultiWOZ 2.3(Wizard-of-OZ 2.3)数据集上与相同条件下的TripPy(Triple coPy)相比提升了1.6个百分点,在WOZ 2.0(Wizard-of-OZ 2.0)数据集上与AG-DST(Amendable Generation for Dialogue State Tracking)相比提升了2.0个百分点。 展开更多
关键词 对话状态追踪 注意力机制 任务型对话 课程学习 预训练模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部