The Kuiyang-ST2000 deep-towed high-resolution multichannel seismic system was designed by the First Institute of Oceanography,Ministry of Natural Resources(FIO,MNR).The system is mainly composed of a plasma spark sour...The Kuiyang-ST2000 deep-towed high-resolution multichannel seismic system was designed by the First Institute of Oceanography,Ministry of Natural Resources(FIO,MNR).The system is mainly composed of a plasma spark source(source level:216 dB,main frequency:750 Hz,frequency bandwidth:150-1200 Hz)and a towed hydrophone streamer with 48 channels.Because the source and the towed hydrophone streamer are constantly moving according to the towing configuration,the accurate positioning of the towing hydrophone array and the moveout correction of deep-towed multichannel seismic data processing before imaging are challenging.Initially,according to the characteristics of the system and the towing streamer shape in deep water,travel-time positioning method was used to construct the hydrophone streamer shape,and the results were corrected by using the polynomial curve fitting method.Then,a new data-processing workflow for Kuiyang-ST2000 system data was introduced,mainly including float datum setting,residual static correction,phase-based moveout correction,which allows the imaging algorithms of conventional marine seismic data processing to extend to deep-towed seismic data.We successfully applied the Kuiyang-ST2000 system and methodology of data processing to a gas hydrate survey of the Qiongdongnan and Shenhu areas in the South China Sea,and the results show that the profile has very high vertical and lateral resolutions(0.5 m and 8 m,respectively),which can provide full and accurate details of gas hydrate-related and geohazard sedimentary and structural features in the South China Sea.展开更多
This paper aims to research the cable-lead-in rod effect on a towed system through mathematical modeling and numerical simulations.The rod dynamics,as a key part of this study,is modeled using the combination of cable...This paper aims to research the cable-lead-in rod effect on a towed system through mathematical modeling and numerical simulations.The rod dynamics,as a key part of this study,is modeled using the combination of cable node governing equations and kinematic constraint conditions.As the first attempt to analyze such a problem,the rod is simply treated as an elastic cable segment so as to be incorporated into the dynamics of the cable,and a set of algorithm is then proposed based on the kinematic constraint conditions to fully describe its motions.Meanwhile,the cable and the underwater vehicle are modeled by the traditional lumped mass method and the 6 degree-of-freedom maneuverability equations for submarines respectively;the coupling boundary conditions besides the rod dynamics are also given to form the whole system's model.Several numerical cases are performed to investigate the rod effect on the system in different maneuver situations.Some meaningful conclusions are drawn through comparative analysis.展开更多
This article discusses the dynamic state analysis of underwater towed-cable when tow-ship changes its speed in a direction making parabolic profile path. A three-dimensional model of underwater towed system is studied...This article discusses the dynamic state analysis of underwater towed-cable when tow-ship changes its speed in a direction making parabolic profile path. A three-dimensional model of underwater towed system is studied. The established governing equations for the system have been solved using the central implicit finite-difference method. The obtained difference non-linear coupled equations are solved by Newton's method and satisfactory results were achieved. The solution of this problem has practical importance in the estimation of dynamic loading and motion, and hence it is directly applicable to the enhancement of safety and the effectiveness of the offshore activities.展开更多
The Deep-towed Acoustics and Geophysics System (DTAGS) is a high frequency (220-820 Hz) multichannel seismic system towed about 300 m above seafloor.Compared to the conventional surface-towed seismic system,the DTAGS ...The Deep-towed Acoustics and Geophysics System (DTAGS) is a high frequency (220-820 Hz) multichannel seismic system towed about 300 m above seafloor.Compared to the conventional surface-towed seismic system,the DTAGS system is characterized by its shorter wavelength (<6 m),smaller Fresnel zone,and greater sampling in wavenumber space,so it has unique advantages in distinguishing fine sedimentary layers and geological structures.Given the near-bottom configuration and wide high-frequency bandwidth,the precise source and hydrophone positioning is the basement of subsequent seismic imaging and velocity analysis,and thus the quality of array geometry inversion is the key of DTAGS data processing.In the application of exploration for marine gas hydrate on mid-slope of northern Cascadia margin,the DTAGS system has shown high vertical and lateral resolution images of the sedimentary and structural features of the Cucumber Ridge (a carbonate mound) and Bullseye Vent (a cold vent),and provided abundant information for the evaluation of gas hydrate concentration and the mechanism of fluid flow that controls the formation and distribution of gas hydrate.展开更多
基金Supported by the National Key R&D Program of China(No.2016YFC0303900)the Laoshan Laboratory(Nos.MGQNLM-KF201807,LSKJ202203604)the National Natural Science Foundation of China(No.42106072)。
文摘The Kuiyang-ST2000 deep-towed high-resolution multichannel seismic system was designed by the First Institute of Oceanography,Ministry of Natural Resources(FIO,MNR).The system is mainly composed of a plasma spark source(source level:216 dB,main frequency:750 Hz,frequency bandwidth:150-1200 Hz)and a towed hydrophone streamer with 48 channels.Because the source and the towed hydrophone streamer are constantly moving according to the towing configuration,the accurate positioning of the towing hydrophone array and the moveout correction of deep-towed multichannel seismic data processing before imaging are challenging.Initially,according to the characteristics of the system and the towing streamer shape in deep water,travel-time positioning method was used to construct the hydrophone streamer shape,and the results were corrected by using the polynomial curve fitting method.Then,a new data-processing workflow for Kuiyang-ST2000 system data was introduced,mainly including float datum setting,residual static correction,phase-based moveout correction,which allows the imaging algorithms of conventional marine seismic data processing to extend to deep-towed seismic data.We successfully applied the Kuiyang-ST2000 system and methodology of data processing to a gas hydrate survey of the Qiongdongnan and Shenhu areas in the South China Sea,and the results show that the profile has very high vertical and lateral resolutions(0.5 m and 8 m,respectively),which can provide full and accurate details of gas hydrate-related and geohazard sedimentary and structural features in the South China Sea.
基金the National Natural Science Foundation of China(No.51779140)
文摘This paper aims to research the cable-lead-in rod effect on a towed system through mathematical modeling and numerical simulations.The rod dynamics,as a key part of this study,is modeled using the combination of cable node governing equations and kinematic constraint conditions.As the first attempt to analyze such a problem,the rod is simply treated as an elastic cable segment so as to be incorporated into the dynamics of the cable,and a set of algorithm is then proposed based on the kinematic constraint conditions to fully describe its motions.Meanwhile,the cable and the underwater vehicle are modeled by the traditional lumped mass method and the 6 degree-of-freedom maneuverability equations for submarines respectively;the coupling boundary conditions besides the rod dynamics are also given to form the whole system's model.Several numerical cases are performed to investigate the rod effect on the system in different maneuver situations.Some meaningful conclusions are drawn through comparative analysis.
文摘This article discusses the dynamic state analysis of underwater towed-cable when tow-ship changes its speed in a direction making parabolic profile path. A three-dimensional model of underwater towed system is studied. The established governing equations for the system have been solved using the central implicit finite-difference method. The obtained difference non-linear coupled equations are solved by Newton's method and satisfactory results were achieved. The solution of this problem has practical importance in the estimation of dynamic loading and motion, and hence it is directly applicable to the enhancement of safety and the effectiveness of the offshore activities.
基金supported by National Natural Science Foundation of China (Grant Nos. 40830423 and 40904029)Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China
文摘The Deep-towed Acoustics and Geophysics System (DTAGS) is a high frequency (220-820 Hz) multichannel seismic system towed about 300 m above seafloor.Compared to the conventional surface-towed seismic system,the DTAGS system is characterized by its shorter wavelength (<6 m),smaller Fresnel zone,and greater sampling in wavenumber space,so it has unique advantages in distinguishing fine sedimentary layers and geological structures.Given the near-bottom configuration and wide high-frequency bandwidth,the precise source and hydrophone positioning is the basement of subsequent seismic imaging and velocity analysis,and thus the quality of array geometry inversion is the key of DTAGS data processing.In the application of exploration for marine gas hydrate on mid-slope of northern Cascadia margin,the DTAGS system has shown high vertical and lateral resolution images of the sedimentary and structural features of the Cucumber Ridge (a carbonate mound) and Bullseye Vent (a cold vent),and provided abundant information for the evaluation of gas hydrate concentration and the mechanism of fluid flow that controls the formation and distribution of gas hydrate.