Topology optimization is an effective method to obtain a lightweight structure that meets the requirements of structural strength.Whether the optimization results meet the actual needs mainly depends on the accuracy o...Topology optimization is an effective method to obtain a lightweight structure that meets the requirements of structural strength.Whether the optimization results meet the actual needs mainly depends on the accuracy of the material properties and the boundary conditions,especially for a tiny Flapping-wing Micro Aerial Vehicle(FMAV)transmission system manufactured by 3D printing.In this paper,experimental and numerical computation efforts were undertaken to gain a reliable topology optimization method for the bottom of the transmission system.First,the constitutive behavior of the ultraviolet(UV)curable resin used in fabrication was evaluated.Second,a numerical computation model describing further verified via experiments.Topology optimization modeling considering nonlinear factors,e.g.contact,friction and collision,was presented,and the optimization results were verified by both dynamic simulation and experiments.Finally,detailed discussions on different load cases and constraints were presented to clarify their effect on the optimization.Our methods and results presented in this paper may shed light on the lightweight design of a FMAV.展开更多
Chiral metamaterials have been proven to possess many appealing mechanical phenomena,such as negative Poisson's ratio,high-impact resistance,and energy absorption.This work extends the applications of chiral metam...Chiral metamaterials have been proven to possess many appealing mechanical phenomena,such as negative Poisson's ratio,high-impact resistance,and energy absorption.This work extends the applications of chiral metamaterials to underwater sound insulation.Various chiral metamaterials with low acoustic impedance and proper stiffness are inversely designed using the topology optimization scheme.Low acoustic impedance enables the metamaterials to have a high and broadband sound transmission loss(STL),while proper stiffness guarantees its robust acoustic performance under a hydrostatic pressure.As proof-of-concept demonstrations,two specimens are fabricated and tested in a water-filled impedance tube.Experimental results show that,on average,over 95%incident sound energy can be isolated by the specimens in a broad frequency range from 1 k Hz to 5 k Hz,while the sound insulation performance keeps stable under a certain hydrostatic pressure.This work may provide new insights for chiral metamaterials into the underwater applications with sound insulation.展开更多
With the increasing penetration of renewable energy sources,transmission maintenance scheduling(TMS)will have a larger impact on the accommodation of wind power.Meanwhile,the more flexible transmission network topolog...With the increasing penetration of renewable energy sources,transmission maintenance scheduling(TMS)will have a larger impact on the accommodation of wind power.Meanwhile,the more flexible transmission network topology owing to the network topology optimization(NTO)technique can ensure the secure and economic operation of power systems.This paper proposes a TMS model considering NTO to decrease the wind curtailment without adding control devices.The problem is formulated as a two-stage stochastic mixed-integer programming model.The first stage arranges the maintenance periods of transmission lines.The second stage optimizes the transmission network topology to minimize the maintenance cost and system operation in different wind speed scenarios.The proposed model cannot be solved efficiently with off-theshelf solvers due to the binary variables in both stages.Therefore,the progressive hedging algorithm is applied.The results on the modified IEEE RTS-79 system show that the proposed method can reduce the negative impact of transmission maintenance on wind accommodation by 65.49%,which proves its effectiveness.展开更多
基金supported by the National Natural Science Foundation of China(No.11672022)。
文摘Topology optimization is an effective method to obtain a lightweight structure that meets the requirements of structural strength.Whether the optimization results meet the actual needs mainly depends on the accuracy of the material properties and the boundary conditions,especially for a tiny Flapping-wing Micro Aerial Vehicle(FMAV)transmission system manufactured by 3D printing.In this paper,experimental and numerical computation efforts were undertaken to gain a reliable topology optimization method for the bottom of the transmission system.First,the constitutive behavior of the ultraviolet(UV)curable resin used in fabrication was evaluated.Second,a numerical computation model describing further verified via experiments.Topology optimization modeling considering nonlinear factors,e.g.contact,friction and collision,was presented,and the optimization results were verified by both dynamic simulation and experiments.Finally,detailed discussions on different load cases and constraints were presented to clarify their effect on the optimization.Our methods and results presented in this paper may shed light on the lightweight design of a FMAV.
基金supported by the National Natural Science Foundation of China(Nos.52171327,11991032,52201386,and 51805537)。
文摘Chiral metamaterials have been proven to possess many appealing mechanical phenomena,such as negative Poisson's ratio,high-impact resistance,and energy absorption.This work extends the applications of chiral metamaterials to underwater sound insulation.Various chiral metamaterials with low acoustic impedance and proper stiffness are inversely designed using the topology optimization scheme.Low acoustic impedance enables the metamaterials to have a high and broadband sound transmission loss(STL),while proper stiffness guarantees its robust acoustic performance under a hydrostatic pressure.As proof-of-concept demonstrations,two specimens are fabricated and tested in a water-filled impedance tube.Experimental results show that,on average,over 95%incident sound energy can be isolated by the specimens in a broad frequency range from 1 k Hz to 5 k Hz,while the sound insulation performance keeps stable under a certain hydrostatic pressure.This work may provide new insights for chiral metamaterials into the underwater applications with sound insulation.
基金This work was supported by the National Key R&D Program of China“Technology and application of wind power/photovoltaic power prediction for promoting renewable energy consumption”(No.2018YFB0904200)eponymous Complement S&T Program of State Grid Corporation of China(No.SGLNDKOOKJJS1800266).
文摘With the increasing penetration of renewable energy sources,transmission maintenance scheduling(TMS)will have a larger impact on the accommodation of wind power.Meanwhile,the more flexible transmission network topology owing to the network topology optimization(NTO)technique can ensure the secure and economic operation of power systems.This paper proposes a TMS model considering NTO to decrease the wind curtailment without adding control devices.The problem is formulated as a two-stage stochastic mixed-integer programming model.The first stage arranges the maintenance periods of transmission lines.The second stage optimizes the transmission network topology to minimize the maintenance cost and system operation in different wind speed scenarios.The proposed model cannot be solved efficiently with off-theshelf solvers due to the binary variables in both stages.Therefore,the progressive hedging algorithm is applied.The results on the modified IEEE RTS-79 system show that the proposed method can reduce the negative impact of transmission maintenance on wind accommodation by 65.49%,which proves its effectiveness.