在移动应用软件中,用户评论是一种重要的用户反馈途径.用户可能提到一些移动应用使用中的问题,比如系统兼容性问题、应用崩溃等.随着移动应用软件的广泛流行,用户提供大量无结构化的反馈评论.为了从用户抱怨评论中提取有效信息,提出一...在移动应用软件中,用户评论是一种重要的用户反馈途径.用户可能提到一些移动应用使用中的问题,比如系统兼容性问题、应用崩溃等.随着移动应用软件的广泛流行,用户提供大量无结构化的反馈评论.为了从用户抱怨评论中提取有效信息,提出一种基于支持向量机和主题模型的评论分析方法 RASL(reviewanalysis methodbased on SVM and LDA)以帮助开发人员更好、更快地了解用户反馈.首先对移动应用的中、差评提取特征,然后使用支持向量机对评论进行多标签分类.随后使用LDA主题模型(latentdirichletallocation)对各问题类型下的评论进行主题提取与代表句提取.从两个移动应用中爬取5 141条用户原始评论,并对这些评论分别用RASL方法和ASUM方法进行处理,得到两个新的文本.与经典方法ASUM相比,RASL方法的困惑度更低、可理解性更佳,包含更完整的原始评论信息,冗余信息也更少.展开更多
[目的/意义]通过构建在线健康社区用户画像,解释不同用户群体的情感差异和特征,以掌握社区用户情感表达规律,推动在线健康社区的信息支持与情感支持功能建设。[方法/过程]首先,分析建立用户画像的目的,结合在线健康社区的数据特点建立...[目的/意义]通过构建在线健康社区用户画像,解释不同用户群体的情感差异和特征,以掌握社区用户情感表达规律,推动在线健康社区的信息支持与情感支持功能建设。[方法/过程]首先,分析建立用户画像的目的,结合在线健康社区的数据特点建立包含基本信息、情感、主题和信息行为特征的用户画像概念模型。其次,确定各用户的标签属性,对标签属性进行抽取。最后,结合情感标签对用户角色进行划分,利用具有噪声的基于密度的空间聚类方法(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)实现了用户画像并分析不同角色的画像特征。[结果/结论]提出的方法可以有效生成贴近用户原貌的画像并识别用户情感表达特征。通过实例分析挖掘出焦虑型、愤怒型、祈祷型、乐观型和悲哀型等5类社区用户群,各用户群体在性别、年龄、影响力、活跃度和兴趣主题方面均表现出不同的情感特征差异。展开更多
文摘在移动应用软件中,用户评论是一种重要的用户反馈途径.用户可能提到一些移动应用使用中的问题,比如系统兼容性问题、应用崩溃等.随着移动应用软件的广泛流行,用户提供大量无结构化的反馈评论.为了从用户抱怨评论中提取有效信息,提出一种基于支持向量机和主题模型的评论分析方法 RASL(reviewanalysis methodbased on SVM and LDA)以帮助开发人员更好、更快地了解用户反馈.首先对移动应用的中、差评提取特征,然后使用支持向量机对评论进行多标签分类.随后使用LDA主题模型(latentdirichletallocation)对各问题类型下的评论进行主题提取与代表句提取.从两个移动应用中爬取5 141条用户原始评论,并对这些评论分别用RASL方法和ASUM方法进行处理,得到两个新的文本.与经典方法ASUM相比,RASL方法的困惑度更低、可理解性更佳,包含更完整的原始评论信息,冗余信息也更少.
文摘[目的/意义]通过构建在线健康社区用户画像,解释不同用户群体的情感差异和特征,以掌握社区用户情感表达规律,推动在线健康社区的信息支持与情感支持功能建设。[方法/过程]首先,分析建立用户画像的目的,结合在线健康社区的数据特点建立包含基本信息、情感、主题和信息行为特征的用户画像概念模型。其次,确定各用户的标签属性,对标签属性进行抽取。最后,结合情感标签对用户角色进行划分,利用具有噪声的基于密度的空间聚类方法(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)实现了用户画像并分析不同角色的画像特征。[结果/结论]提出的方法可以有效生成贴近用户原貌的画像并识别用户情感表达特征。通过实例分析挖掘出焦虑型、愤怒型、祈祷型、乐观型和悲哀型等5类社区用户群,各用户群体在性别、年龄、影响力、活跃度和兴趣主题方面均表现出不同的情感特征差异。