In order to fabricate titania nanotubes on glass substrate, Ti thin films (700-900 nm) were first deposited by radio-frequency(RF) magnetron sputtering and then anodized in an aqueous HF electrolyte solution at room t...In order to fabricate titania nanotubes on glass substrate, Ti thin films (700-900 nm) were first deposited by radio-frequency(RF) magnetron sputtering and then anodized in an aqueous HF electrolyte solution at room temperature. The morphology and structure of the nanotubes were identified by means of field emission scanning electron microscopy(FE-SEM) and X-ray diffractometry(XRD). The effects of anodization parameters (concentration of electrolyte, applied voltage) on nanotube morphology were comprehensively investigated. The results show that the dense and crystalline Ti film can be obtained on the unheated glass substrate under the sputtering power of 150 W, and the anodization current and voltage play significant roles in the formation of titania nanotube with different tube sizes.展开更多
The TiO 2 nanotube sample was prepared via a NaOH solution in a Teflon vessel at 150℃. The as-prepared nanotubes were then treated with H 2SO 4 solutions. The TiO 2 nanotube has a crystalline structure with open-...The TiO 2 nanotube sample was prepared via a NaOH solution in a Teflon vessel at 150℃. The as-prepared nanotubes were then treated with H 2SO 4 solutions. The TiO 2 nanotube has a crystalline structure with open-ended and multiwall morphologies. The TiO 2 nanotubes before and after surface acid treatment were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM) and UV-VIS dispersive energy spectrophotometry(DRS). The photocatalytic activity of the samples was evaluated by photocatalytic degradation of acid orange II in aqueous solutions. It was found that the order of photocatalytic activity was as follows: TiO 2 nanotubes treated with 1.0 mol/L H 2SO 4 solution (TiO 2(1.0M H 2SO 4) nanotubes)>TiO 2 nanotubes treated with 0.2 mol/L H 2SO 4 solution (TiO 2(0.2M H 2SO 4) nanotubes)>TiO 2 nanotubes >TiO 2 powder. This was attributed to the fact that TiO 2 nanotubes treated with H 2SO 4 was composed of smaller particles and had higher specific surface areas. Furthermore, the smaller TiO 2 particles were beneficial to the transfer and separation of photo-generated electrons and holes in the inner of and on the surface of TiO 2 particles and reduced the recombination of photo-generated electrons and holes. Acid treatment was particularly effective for TiO 2 nanotubes, this increase in activity was correlated with the concentration of H 2SO 4 solution.展开更多
To improve the photocatalytic efficiency of TiO2nanotubular catalyst,N doped and Pd decorated titania nanotubes was successfully synthesized via anodizing,hydrazine hydrate treatment and photoreduction of Pd ions.The ...To improve the photocatalytic efficiency of TiO2nanotubular catalyst,N doped and Pd decorated titania nanotubes was successfully synthesized via anodizing,hydrazine hydrate treatment and photoreduction of Pd ions.The small Pd nanoparticles were precipitated on TiO2nanotubes through photoreduction of Pd ions,and its distribution is relatively homogeneous.From X-ray photoelectron spectrometry(XPS) result,the N 1s spectrum represents two peaks with binding energy at 399.7 and 400.7 eV,which suggests that the nitrogen elements doped by hydrazine hydrate treatment are located in interstitial sites of the TiO2crystalline structure.For N doped TiO2nanotubes with Pd particles,a high photocurrent was detected due to increase of interface charge carrier separation rate.Moreover,N doped and Pd decorated TiO2nanotubes exhibited much higher dye destruction efficiency and rate constant due to the synergistic effect of the N dopant and the Pd deposition on TiO2nanotubes.展开更多
文摘In order to fabricate titania nanotubes on glass substrate, Ti thin films (700-900 nm) were first deposited by radio-frequency(RF) magnetron sputtering and then anodized in an aqueous HF electrolyte solution at room temperature. The morphology and structure of the nanotubes were identified by means of field emission scanning electron microscopy(FE-SEM) and X-ray diffractometry(XRD). The effects of anodization parameters (concentration of electrolyte, applied voltage) on nanotube morphology were comprehensively investigated. The results show that the dense and crystalline Ti film can be obtained on the unheated glass substrate under the sputtering power of 150 W, and the anodization current and voltage play significant roles in the formation of titania nanotube with different tube sizes.
基金supported by the National Natural Science Foundation of China(50672041)National High-Tech Research and Development Program of China(863)(2006AA03Z218)Natural Science Foundation of Beijing,China(2062013)~~
文摘The TiO 2 nanotube sample was prepared via a NaOH solution in a Teflon vessel at 150℃. The as-prepared nanotubes were then treated with H 2SO 4 solutions. The TiO 2 nanotube has a crystalline structure with open-ended and multiwall morphologies. The TiO 2 nanotubes before and after surface acid treatment were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM) and UV-VIS dispersive energy spectrophotometry(DRS). The photocatalytic activity of the samples was evaluated by photocatalytic degradation of acid orange II in aqueous solutions. It was found that the order of photocatalytic activity was as follows: TiO 2 nanotubes treated with 1.0 mol/L H 2SO 4 solution (TiO 2(1.0M H 2SO 4) nanotubes)>TiO 2 nanotubes treated with 0.2 mol/L H 2SO 4 solution (TiO 2(0.2M H 2SO 4) nanotubes)>TiO 2 nanotubes >TiO 2 powder. This was attributed to the fact that TiO 2 nanotubes treated with H 2SO 4 was composed of smaller particles and had higher specific surface areas. Furthermore, the smaller TiO 2 particles were beneficial to the transfer and separation of photo-generated electrons and holes in the inner of and on the surface of TiO 2 particles and reduced the recombination of photo-generated electrons and holes. Acid treatment was particularly effective for TiO 2 nanotubes, this increase in activity was correlated with the concentration of H 2SO 4 solution.
基金supported by the 2013 research program of Hanseo University in Korea
文摘To improve the photocatalytic efficiency of TiO2nanotubular catalyst,N doped and Pd decorated titania nanotubes was successfully synthesized via anodizing,hydrazine hydrate treatment and photoreduction of Pd ions.The small Pd nanoparticles were precipitated on TiO2nanotubes through photoreduction of Pd ions,and its distribution is relatively homogeneous.From X-ray photoelectron spectrometry(XPS) result,the N 1s spectrum represents two peaks with binding energy at 399.7 and 400.7 eV,which suggests that the nitrogen elements doped by hydrazine hydrate treatment are located in interstitial sites of the TiO2crystalline structure.For N doped TiO2nanotubes with Pd particles,a high photocurrent was detected due to increase of interface charge carrier separation rate.Moreover,N doped and Pd decorated TiO2nanotubes exhibited much higher dye destruction efficiency and rate constant due to the synergistic effect of the N dopant and the Pd deposition on TiO2nanotubes.