BACKGROUND:This study aimed to observe the effect of early goal directed therapy(EGDT)on tissue perfusion,microcirculation and tissue oxygenation in patients with septic shock.METHODS:Patients with early septic shock(...BACKGROUND:This study aimed to observe the effect of early goal directed therapy(EGDT)on tissue perfusion,microcirculation and tissue oxygenation in patients with septic shock.METHODS:Patients with early septic shock(<24 hours) who had been admitted to the ICU of Zhongda Hospital Affiliated to Southeast University from September 2009 through May 2011 were enrolled(research time:12 months),and they didn't meet the criteria of EGDT.Patients who had one of the following were excluded:stroke,brain injury,other types of shock,severe heart failure,acute myocardial infarction,age below 18 years,pregnancy,end-stage disease,cardiac arrest,extensive burns,oral bleeding,difficulty in opening the mouth,and the onset of septic shock beyond 24 hours.Patients treated with the standard protocol of EGDT were included.Transcutaneous pressure of oxygen and carbon dioxide(PtcO_2,PtcCO_2) were monitored and hemodynamic measurements were obtained.Side-stream dark field(SDF) imaging device was applied to obtain sublingual microcirculation.Hemodynamics,tissue oxygen,and sublingual microcirculation were compared before and after EGDT.If the variable meets the normal distribution,Student's t test was applied.Otherwise,Wilcoxon's rank-sum test was used.Correlation between variables was analyzed with Pearson's product-moment correlation coefficient method.RESULTS:Twenty patients were involved,but one patient wasn't analyzed because he didn't meet the EGDT criteria.PtcO_2 and PtcCO_2 were monitored in 19 patients,of whom sublingual microcirculation was obtained.After EGDT,PtcO_2 increased from 62.7+24.0 mmHg to 78.0±30.9mmHg(P<0.05) and tissue oxygenation index(PtcO_2/FiO_2) was 110.7+60.4 mmHg before EGDT and 141.6±78.2 mmHg after EGDT(P<0.05).The difference between PtcCO_2 and PCO_2 decreased significantly after EGDT(P<0.05).The density of perfused small vessels(PPV) and microcirculatory flow index of small vessels(MFI) tended to increase,but there were no significant differences between them(P>0.05).PtcO_2,PtcO_2/FiO_2,and PtcCO_2 were 展开更多
Generally, hypoxia is a normal physiological condition in the flaccid penis, which is interrupted by regular nocturnal erections in men with normal erectile function.1 Lack of spontaneous and nocturnal erections after...Generally, hypoxia is a normal physiological condition in the flaccid penis, which is interrupted by regular nocturnal erections in men with normal erectile function.1 Lack of spontaneous and nocturnal erections after radical prostatectomy due to neuropraxia results in persistent hypoxia of cavernosal tissue, which leads to apoptosis and degeneration of cavernosal smooth muscle fibers. Therefore, overcoming hypoxia is believed to play a crucial role during neuropraxia. The use of a vacuum erectile device (VED) in penile rehabilitation is reportedly effective and may prevent loss of penile length. The corporal blood after VED use is increased and consists of both arterial and venous blood, as revealed by color Doppler sonography and blood gas analysis. A similar phenomenon was observed in negative pressure wound therapy (NPWT). However, NPWT employs a lower negative pressure than VED, and a hypoperfused zone, which increases in response to negative pressure adjacent to the wound edge, was observed. Nonetheless, questions regarding ideal subatmospheric pressure levels, modes of action, and therapeutic duration of VED remain unanswered. Moreover, it remains unclear whether a hypoperfused zone or PO2 gradient appears in the penis during VED therapy. To optimize a clinical VED protocol in penile rehabilitation, further research on the mechanism of VED, especially real-time PO2 measurements in different parts of the penis, should be performed.展开更多
文摘BACKGROUND:This study aimed to observe the effect of early goal directed therapy(EGDT)on tissue perfusion,microcirculation and tissue oxygenation in patients with septic shock.METHODS:Patients with early septic shock(<24 hours) who had been admitted to the ICU of Zhongda Hospital Affiliated to Southeast University from September 2009 through May 2011 were enrolled(research time:12 months),and they didn't meet the criteria of EGDT.Patients who had one of the following were excluded:stroke,brain injury,other types of shock,severe heart failure,acute myocardial infarction,age below 18 years,pregnancy,end-stage disease,cardiac arrest,extensive burns,oral bleeding,difficulty in opening the mouth,and the onset of septic shock beyond 24 hours.Patients treated with the standard protocol of EGDT were included.Transcutaneous pressure of oxygen and carbon dioxide(PtcO_2,PtcCO_2) were monitored and hemodynamic measurements were obtained.Side-stream dark field(SDF) imaging device was applied to obtain sublingual microcirculation.Hemodynamics,tissue oxygen,and sublingual microcirculation were compared before and after EGDT.If the variable meets the normal distribution,Student's t test was applied.Otherwise,Wilcoxon's rank-sum test was used.Correlation between variables was analyzed with Pearson's product-moment correlation coefficient method.RESULTS:Twenty patients were involved,but one patient wasn't analyzed because he didn't meet the EGDT criteria.PtcO_2 and PtcCO_2 were monitored in 19 patients,of whom sublingual microcirculation was obtained.After EGDT,PtcO_2 increased from 62.7+24.0 mmHg to 78.0±30.9mmHg(P<0.05) and tissue oxygenation index(PtcO_2/FiO_2) was 110.7+60.4 mmHg before EGDT and 141.6±78.2 mmHg after EGDT(P<0.05).The difference between PtcCO_2 and PCO_2 decreased significantly after EGDT(P<0.05).The density of perfused small vessels(PPV) and microcirculatory flow index of small vessels(MFI) tended to increase,but there were no significant differences between them(P>0.05).PtcO_2,PtcO_2/FiO_2,and PtcCO_2 were
文摘Generally, hypoxia is a normal physiological condition in the flaccid penis, which is interrupted by regular nocturnal erections in men with normal erectile function.1 Lack of spontaneous and nocturnal erections after radical prostatectomy due to neuropraxia results in persistent hypoxia of cavernosal tissue, which leads to apoptosis and degeneration of cavernosal smooth muscle fibers. Therefore, overcoming hypoxia is believed to play a crucial role during neuropraxia. The use of a vacuum erectile device (VED) in penile rehabilitation is reportedly effective and may prevent loss of penile length. The corporal blood after VED use is increased and consists of both arterial and venous blood, as revealed by color Doppler sonography and blood gas analysis. A similar phenomenon was observed in negative pressure wound therapy (NPWT). However, NPWT employs a lower negative pressure than VED, and a hypoperfused zone, which increases in response to negative pressure adjacent to the wound edge, was observed. Nonetheless, questions regarding ideal subatmospheric pressure levels, modes of action, and therapeutic duration of VED remain unanswered. Moreover, it remains unclear whether a hypoperfused zone or PO2 gradient appears in the penis during VED therapy. To optimize a clinical VED protocol in penile rehabilitation, further research on the mechanism of VED, especially real-time PO2 measurements in different parts of the penis, should be performed.