期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于PSO-BP神经网络的轮胎负荷测量方法
1
作者 曹旭 张舜 +1 位作者 许彦峰 王青春 《轮胎工业》 CAS 2024年第5期312-315,共4页
研究基于粒子群优化(PSO)算法-BP神经网络的轮胎负荷测量方法。将采集的轮胎状态信息与提取到的加速度特征输入到BP神经网络,对轮胎负荷进行回归预测,使用PSO算法优化BP神经网络的权值与阈值,得到轮胎状态信息与轮胎负荷的关系。结果表... 研究基于粒子群优化(PSO)算法-BP神经网络的轮胎负荷测量方法。将采集的轮胎状态信息与提取到的加速度特征输入到BP神经网络,对轮胎负荷进行回归预测,使用PSO算法优化BP神经网络的权值与阈值,得到轮胎状态信息与轮胎负荷的关系。结果表明,采用PSO-BP神经网络预测轮胎负荷误差为1.8656%,PSO-BP神经网络预测精度较高,在转变工况条件下,预测误差为2.496%。 展开更多
关键词 轮胎负荷 轮胎状态信息 加速度特征 粒子群优化算法 BP神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部