Perovskite solar cells(PSCs)have gained increasing attention due to their excellent photovoltaic performance,achieving certified power conversion efficiency(PCE)of 25.2%.To further enhance PCE and break the Shockley-Q...Perovskite solar cells(PSCs)have gained increasing attention due to their excellent photovoltaic performance,achieving certified power conversion efficiency(PCE)of 25.2%.To further enhance PCE and break the Shockley-Queisser limit of the single junction PSCs,great efforts have been made in tandem solar cells based on perovskite,including perovskite/Si,and perovskite/perovskite(all-perovskite).Among them,all-perovskite tandem solar cells exhibit unique advantages of both lowcost fabrication and high efficiency.They have advanced rapidly in these years,due to the realization of stable and efficient narrow-bandgap perovskites.In this work,we review the development of monolithic all-perovskite tandem solar cells and highlight the critical role of narrow-bandgap perovskites in recent progress of all-perovskite solar cells.We also propose our perspective of future directions on this subject.展开更多
Formamidinium(FA)-based Sn-Pb perovskite solar cells(FAPb_(0.5)Sn_(0.5)I_(3) PSCs)with ideal bandgap and impressive thermal stability have caught enormous attention recently.However,it still suffers from the challenge...Formamidinium(FA)-based Sn-Pb perovskite solar cells(FAPb_(0.5)Sn_(0.5)I_(3) PSCs)with ideal bandgap and impressive thermal stability have caught enormous attention recently.However,it still suffers from the challenge of realizing high efficiency due to the surface imperfections of the transport materials and the energy-level mismatch between functional contacts.Herein,it is demonstrated that the modification on buried interface with alkali metal salts is a viable strategy to alleviate these issues.We systematically investigate the role of three alkali metal bromide salts(NaBr,KBr,CsBr)by burying them between the NiOx hole transport layer(HTL)and the perovskite light-absorbing layer,which can effectively passivate interface defects,improve energy-level matching and release the internal residual strain in perovskite layers.The device with CsBr buffer layer exhibits the best power conversion efficiency(PCE)approaching 20%,which is one of the highest efficiencies for FA-based Sn-Pb PSCs employing NiO_(x) HTLs.Impressively,the long-term storage stability of the unencapsulated device is also greatly boosted.Our work provides an efficient strategy to prepare desired FA-based ideal-bandgap Sn-Pb PSCs which could be applied in tandem solar cells.展开更多
There have been huge achievements of all-perovskite tandem solar cells,which recently realized the highest power conversion efficiency of 24.8%.However,the complex device structure and complicated manufacture processe...There have been huge achievements of all-perovskite tandem solar cells,which recently realized the highest power conversion efficiency of 24.8%.However,the complex device structure and complicated manufacture processes severely restrict the further development of all-perovskite tandem solar cells.In this work,we successfully fabricated high-efficiency hole transport material-free(HTM-free)Sn−Pb alloyed narrow bandgap perovskite solar cells(PSCs)by introducing guanidinium thiocyanate(GASCN)and hydroiodic acid(HI)into the perovskite precursor solution.GASCN and HI play a positive synergy effect during perovskite crystallization process resulting in larger grain size,fewer surface defects,and lower trap density to suppress the Sn^(2+)oxidation degradation.Furthermore,they could effectively adjust the energy level of perovskite materials,reduce the energy level difference between perovskite and ITO resulting in more efficiently transport of free hole charge carriers.As a result,with adding GASCN and HI,the achieved highest power conversion efficiency of HTM-free devices increased from 12.58%to 17.85%,which is one of the highest PCEs among all values reported to date for the HTM-free narrow-bandgap(1.2-1.4 eV)Sn−Pb binary PSCs.Moreover,the optimized device shows improved environmental stability.Our additive strategy manifests a remarkable step towards the facile,cost-efficient fabrication of HTM-free perovskite-based tandem solar cells with both high efficiency and simple fabrication process.展开更多
无机锡(Sn)–铅(Pb)基混合卤素钙钛矿由于其宽的响应波长范围和高的热稳定性,比有机–无机复合铅基卤素钙钛矿更具有吸引力.为了进一步提高Sn–Pb基混合卤素钙钛矿器件的性能,有必要进一步操纵载流子分离和复合.本文提出了一种基于梯度...无机锡(Sn)–铅(Pb)基混合卤素钙钛矿由于其宽的响应波长范围和高的热稳定性,比有机–无机复合铅基卤素钙钛矿更具有吸引力.为了进一步提高Sn–Pb基混合卤素钙钛矿器件的性能,有必要进一步操纵载流子分离和复合.本文提出了一种基于梯度无机CsPb_(0.7)Sn_(0.3)I3的自驱动光电探测器.通过调节退火温度优化CsPb_(0.7)Sn_(0.3)I3基钙钛矿膜中Sn和Pb梯度分布的程度,最终,最优的梯度钙钛矿器件表现出高的响应度(0.18 A W^(−1)),大的比探测率(2.5×10^(12)Jones),和快的响应速率(58.9/42μs),与之前报道的大多数Sn–Pb混合或纯Sn钙钛矿光电探测器性能相当.器件性能的提高主要归因于梯度分布诱导的能带弯曲促进了光生载流子的分离和传输.展开更多
Mixed tin-lead iodide perovskites exhibit the characteristics of low toxicity and improved light harvesting ability up to nearinfrared(NIR) spectral region, making them as an attractive alternative for traditional lea...Mixed tin-lead iodide perovskites exhibit the characteristics of low toxicity and improved light harvesting ability up to nearinfrared(NIR) spectral region, making them as an attractive alternative for traditional lead based perovskites. However, the performance of lead-based perovskites solar cells is still far inferior to their lead analogues owing to the unavoidable oxidation of Sn^(2+)to Sn^(4+). Here we introduced two-dimensional(2D) perovskite on the top of three dimensional(3D) perovskite film as a capping layer to reduce the self-oxidation, and thus improved the device stability. 2D capping layer was then confirmed by X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) analysis. The existence of the 2D protecting thin layer significantly reduce the spontaneous Sn^(2+)oxidation, thus improve the device performance and reduce the hysteresis. The phenomena could be ascribed to the improved charge extraction efficiency causing by prohibited nonradiative recombination. On top of this, the photovoltaic devices based on conventional-structure configuration were fabricated. Taking advantage of the 2D capping layer, 2D/3D hybrid perovskite photovoltaic devices achieve a open-circuit voltage(Voc) of 0.77 V with short circuit current density(Jsc) of 26.60 mA cm^(-2), delivering the best-performing power conversion efficiency of 15.5%. Moreover, the 2D/3D perovskite devices maintained 60% its initial efficiency after 40 h exposed in air(humidity around 30%, temperature 22 °C),while 3D perovskite-based devices completely failed.展开更多
The temperature rise caused by plastic deformation during the quick upsetting of tin-lead alloy and mild steel was investigated via experiments and numerical simulations aiming at a better understanding of the heat ge...The temperature rise caused by plastic deformation during the quick upsetting of tin-lead alloy and mild steel was investigated via experiments and numerical simulations aiming at a better understanding of the heat generation mechanism in friction welding. The results show that the compression amount and deformation temperature influence significantly the temperature rise during the upsetting of tin-lead alloy. The temperature rise increases with increasing the compression but decreases with increasing the deformation temperature. The simulation results are in good agreement with the experimental inspection for Sn63A alloy. The simulation results of mild steel present a similar tendency with tin-lead alloy. Moreover, the temperature rise of mild steel at elevated temperatures is comparable to that of tin-lead alloy at low temperatures.展开更多
By employing the minimum energy theorem, the Potential energy controlling equation, which consists of surface energy and gravitational energy for molten meniscus, was investigated. The soder joint geometry of molten t...By employing the minimum energy theorem, the Potential energy controlling equation, which consists of surface energy and gravitational energy for molten meniscus, was investigated. The soder joint geometry of molten tin-lead soder alloy for chip component and thin quad flat package were simulated with finite element method. The simulation results 0f solder joint geometry are coincident well with the experimental results. The solder joint geometry was applied to study the solder joint reliability for chip component RC3216.The thermal cycling tests revealed that the solder joint geometry plays an important ro1e in solder joint reliability.展开更多
The complete elimination of methylammonium(MA)cations in Sn-Pb composites can extend their light and thermal stabilities.Unfortunately,MA-free Sn-Pb alloyed perovskite thin films suffer from wrinkled surfaces and poor...The complete elimination of methylammonium(MA)cations in Sn-Pb composites can extend their light and thermal stabilities.Unfortunately,MA-free Sn-Pb alloyed perovskite thin films suffer from wrinkled surfaces and poor crystallization,due to the coexistence of mixed intermediate phases.Here,we report an additive strategy for finely regulating the impurities in the intermediate phase of Cs_(0.25)FA_(0.75)Pb_(0.6)Sn_(0.4)I_(3)and,thereby,obtaining high-performance solar cells.We introduced d-homoserine lactone hydrochloride(D-HLH)to form hydrogen bonds and strong Pb-O/Sn-O bonds with perovskite precursors,thereby weakening the incomplete complexation effect between polar aprotic solvents(e.g.,DMSO)and organic(FAI)or inorganic(CsI,PbI_(2),and SnI_(2))components,and balancing their nucleation processes.This treatment completely transformed mixed intermediate phases into pure preformed perovskite nuclei prior to thermal anneal-ing.Besides,this D-HLH substantially inhibited the oxidation of Sn^(2+) species.This strategy generated a record efficiency of 21.61%,with a Voc of 0.88 V for an MA-free Sn-Pb device,and an efficiency of 23.82%for its tandem device.The unencapsulated devices displayed impressive thermal stability at 85℃ for 300 h and much improved continuous operation stability at MPP for 120 h.展开更多
Sn60Pb40 al oy powders were fabricated using the planar flow casting (PFC) atomization process. By using OM, SEM and EPMA, the characteristics of the morphologies and microstructures of the powders have been investi...Sn60Pb40 al oy powders were fabricated using the planar flow casting (PFC) atomization process. By using OM, SEM and EPMA, the characteristics of the morphologies and microstructures of the powders have been investigated. It is observed that the environment of ambient gas in the atomization box has great effects on the morphology of the al oy powders. The microstructures of Sn60Pb40 al oy powders produced by the PFC atomization process are completely composed of eutectic, which is made up of both oversaturated αsolid solution and β solid solution. The microstructures of smal size powders are extraordinarily undeveloped dendritic eutectic, in which the large majority of the α phase appears nearly spherical, evidently since the cooling rate is higher and the under-cooling is larger. As for the large size powders, since the cooling rate and undercooling are relatively low, lamel ar α phase apparently increases in the eutectic microstructures of these powders, and there is even typical lamellar eutectic structure clearly observed in some micro-areas. After remelting tests by DTA, the microstructures of smal size powders are transformed, which become composed of large crumby α phase and eutectic (α+β), while those of large size powders change into classical tin-lead structures of primary α phase plus lamellar eutectic (α+β). By studying the microstructures of tin-lead alloy powders, a model has been proposed to predict the microstructure formation of Sn60Pb40 al oy powders.展开更多
Conventional planar flow casting(PFC) is one of rapid solidification processes for the fabrication of microcrystalline or amorphous ribbons.Based on the conventional PFC process,the planar flow casting atomization(PFC...Conventional planar flow casting(PFC) is one of rapid solidification processes for the fabrication of microcrystalline or amorphous ribbons.Based on the conventional PFC process,the planar flow casting atomization(PFCA) process has been developed,which is a new rapid solidification process for the production of metal powder directly from alloy melts.A prototype experimental apparatus was designed and manufactured.With the apparatus,Sn60Pb40 alloy solder powders were prepared,and the effects of the main technological parameters on the powder size distribution and morphology were experimentally studied.The experimental investigations indicate that the metal powders produced by the PFCA process can be classified by velocity;and fine spherical tin-lead alloy solder powders can be fabricated by adjusting the technical parameters.The new PFCA process has such features as high productivity and efficiency,low energy consumption,simple operation,short technological process,and large gross yield.展开更多
基金the National Natural Science Foundation of China(11834011,11674219,11574199)。
文摘Perovskite solar cells(PSCs)have gained increasing attention due to their excellent photovoltaic performance,achieving certified power conversion efficiency(PCE)of 25.2%.To further enhance PCE and break the Shockley-Queisser limit of the single junction PSCs,great efforts have been made in tandem solar cells based on perovskite,including perovskite/Si,and perovskite/perovskite(all-perovskite).Among them,all-perovskite tandem solar cells exhibit unique advantages of both lowcost fabrication and high efficiency.They have advanced rapidly in these years,due to the realization of stable and efficient narrow-bandgap perovskites.In this work,we review the development of monolithic all-perovskite tandem solar cells and highlight the critical role of narrow-bandgap perovskites in recent progress of all-perovskite solar cells.We also propose our perspective of future directions on this subject.
基金support from the National Natural Science Foundation of China(No.61974106)the Core Facility of Wuhan University。
文摘Formamidinium(FA)-based Sn-Pb perovskite solar cells(FAPb_(0.5)Sn_(0.5)I_(3) PSCs)with ideal bandgap and impressive thermal stability have caught enormous attention recently.However,it still suffers from the challenge of realizing high efficiency due to the surface imperfections of the transport materials and the energy-level mismatch between functional contacts.Herein,it is demonstrated that the modification on buried interface with alkali metal salts is a viable strategy to alleviate these issues.We systematically investigate the role of three alkali metal bromide salts(NaBr,KBr,CsBr)by burying them between the NiOx hole transport layer(HTL)and the perovskite light-absorbing layer,which can effectively passivate interface defects,improve energy-level matching and release the internal residual strain in perovskite layers.The device with CsBr buffer layer exhibits the best power conversion efficiency(PCE)approaching 20%,which is one of the highest efficiencies for FA-based Sn-Pb PSCs employing NiO_(x) HTLs.Impressively,the long-term storage stability of the unencapsulated device is also greatly boosted.Our work provides an efficient strategy to prepare desired FA-based ideal-bandgap Sn-Pb PSCs which could be applied in tandem solar cells.
基金financially supported by the Joint Funds Project funding from Guangdong Basic and Applied Basic Research Foundation(Grant No.2019B1515120083)the National Natural Science Foundation of China(Grant No.U19A2089)+4 种基金the Key Fundamental Research Project funding from the Shenzhen Science and Technology Innovation Committee(Grant No.JCYJ20200109141014474)the National Key Research and Development Project from the Ministry of Science and Technology of China(Grants Nos.2016YFA0202400 and 2016YFA0202404)the Peacock Team Project from Shenzhen Science and Technology Innovation Committee(Grant No.KQTD2015033110182370)Shenzhen Engineering R&D Center for Flexible Solar Cells project funding from Shenzhen Development and Reform Committee(Grant No.2019-126)the Guangdong-Hong Kong-Macao Joint Laboratory(Grant No.2019B121205001).
文摘There have been huge achievements of all-perovskite tandem solar cells,which recently realized the highest power conversion efficiency of 24.8%.However,the complex device structure and complicated manufacture processes severely restrict the further development of all-perovskite tandem solar cells.In this work,we successfully fabricated high-efficiency hole transport material-free(HTM-free)Sn−Pb alloyed narrow bandgap perovskite solar cells(PSCs)by introducing guanidinium thiocyanate(GASCN)and hydroiodic acid(HI)into the perovskite precursor solution.GASCN and HI play a positive synergy effect during perovskite crystallization process resulting in larger grain size,fewer surface defects,and lower trap density to suppress the Sn^(2+)oxidation degradation.Furthermore,they could effectively adjust the energy level of perovskite materials,reduce the energy level difference between perovskite and ITO resulting in more efficiently transport of free hole charge carriers.As a result,with adding GASCN and HI,the achieved highest power conversion efficiency of HTM-free devices increased from 12.58%to 17.85%,which is one of the highest PCEs among all values reported to date for the HTM-free narrow-bandgap(1.2-1.4 eV)Sn−Pb binary PSCs.Moreover,the optimized device shows improved environmental stability.Our additive strategy manifests a remarkable step towards the facile,cost-efficient fabrication of HTM-free perovskite-based tandem solar cells with both high efficiency and simple fabrication process.
基金financially supported by the National Natural Science Foundation of China(52025028,52002258,52202273,and U22A20137)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions.
文摘无机锡(Sn)–铅(Pb)基混合卤素钙钛矿由于其宽的响应波长范围和高的热稳定性,比有机–无机复合铅基卤素钙钛矿更具有吸引力.为了进一步提高Sn–Pb基混合卤素钙钛矿器件的性能,有必要进一步操纵载流子分离和复合.本文提出了一种基于梯度无机CsPb_(0.7)Sn_(0.3)I3的自驱动光电探测器.通过调节退火温度优化CsPb_(0.7)Sn_(0.3)I3基钙钛矿膜中Sn和Pb梯度分布的程度,最终,最优的梯度钙钛矿器件表现出高的响应度(0.18 A W^(−1)),大的比探测率(2.5×10^(12)Jones),和快的响应速率(58.9/42μs),与之前报道的大多数Sn–Pb混合或纯Sn钙钛矿光电探测器性能相当.器件性能的提高主要归因于梯度分布诱导的能带弯曲促进了光生载流子的分离和传输.
基金supported by the National Natural Science Foundation of China(21771114)MOE 111(B12015)+2 种基金the Natural Science Foundation of Tianjin(17JCYBJC40900,18YFZCGX00580)the Fundamental Research Funds for the Central Universitiesthe financial support from "Thousand Youth Talents Plan of China"
文摘Mixed tin-lead iodide perovskites exhibit the characteristics of low toxicity and improved light harvesting ability up to nearinfrared(NIR) spectral region, making them as an attractive alternative for traditional lead based perovskites. However, the performance of lead-based perovskites solar cells is still far inferior to their lead analogues owing to the unavoidable oxidation of Sn^(2+)to Sn^(4+). Here we introduced two-dimensional(2D) perovskite on the top of three dimensional(3D) perovskite film as a capping layer to reduce the self-oxidation, and thus improved the device stability. 2D capping layer was then confirmed by X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) analysis. The existence of the 2D protecting thin layer significantly reduce the spontaneous Sn^(2+)oxidation, thus improve the device performance and reduce the hysteresis. The phenomena could be ascribed to the improved charge extraction efficiency causing by prohibited nonradiative recombination. On top of this, the photovoltaic devices based on conventional-structure configuration were fabricated. Taking advantage of the 2D capping layer, 2D/3D hybrid perovskite photovoltaic devices achieve a open-circuit voltage(Voc) of 0.77 V with short circuit current density(Jsc) of 26.60 mA cm^(-2), delivering the best-performing power conversion efficiency of 15.5%. Moreover, the 2D/3D perovskite devices maintained 60% its initial efficiency after 40 h exposed in air(humidity around 30%, temperature 22 °C),while 3D perovskite-based devices completely failed.
文摘The temperature rise caused by plastic deformation during the quick upsetting of tin-lead alloy and mild steel was investigated via experiments and numerical simulations aiming at a better understanding of the heat generation mechanism in friction welding. The results show that the compression amount and deformation temperature influence significantly the temperature rise during the upsetting of tin-lead alloy. The temperature rise increases with increasing the compression but decreases with increasing the deformation temperature. The simulation results are in good agreement with the experimental inspection for Sn63A alloy. The simulation results of mild steel present a similar tendency with tin-lead alloy. Moreover, the temperature rise of mild steel at elevated temperatures is comparable to that of tin-lead alloy at low temperatures.
文摘By employing the minimum energy theorem, the Potential energy controlling equation, which consists of surface energy and gravitational energy for molten meniscus, was investigated. The soder joint geometry of molten tin-lead soder alloy for chip component and thin quad flat package were simulated with finite element method. The simulation results 0f solder joint geometry are coincident well with the experimental results. The solder joint geometry was applied to study the solder joint reliability for chip component RC3216.The thermal cycling tests revealed that the solder joint geometry plays an important ro1e in solder joint reliability.
基金funded by the Natural Science Foundation of Shanghai(22ZR1428200)the National Natural Science Foundation of China(51950410581)+1 种基金the Shanghai Government(20JC141500)and CATL-SJTU joint funding.
文摘The complete elimination of methylammonium(MA)cations in Sn-Pb composites can extend their light and thermal stabilities.Unfortunately,MA-free Sn-Pb alloyed perovskite thin films suffer from wrinkled surfaces and poor crystallization,due to the coexistence of mixed intermediate phases.Here,we report an additive strategy for finely regulating the impurities in the intermediate phase of Cs_(0.25)FA_(0.75)Pb_(0.6)Sn_(0.4)I_(3)and,thereby,obtaining high-performance solar cells.We introduced d-homoserine lactone hydrochloride(D-HLH)to form hydrogen bonds and strong Pb-O/Sn-O bonds with perovskite precursors,thereby weakening the incomplete complexation effect between polar aprotic solvents(e.g.,DMSO)and organic(FAI)or inorganic(CsI,PbI_(2),and SnI_(2))components,and balancing their nucleation processes.This treatment completely transformed mixed intermediate phases into pure preformed perovskite nuclei prior to thermal anneal-ing.Besides,this D-HLH substantially inhibited the oxidation of Sn^(2+) species.This strategy generated a record efficiency of 21.61%,with a Voc of 0.88 V for an MA-free Sn-Pb device,and an efficiency of 23.82%for its tandem device.The unencapsulated devices displayed impressive thermal stability at 85℃ for 300 h and much improved continuous operation stability at MPP for 120 h.
基金supported by the Natural Science Foundation of Liaoning Province (No.20072043)
文摘Sn60Pb40 al oy powders were fabricated using the planar flow casting (PFC) atomization process. By using OM, SEM and EPMA, the characteristics of the morphologies and microstructures of the powders have been investigated. It is observed that the environment of ambient gas in the atomization box has great effects on the morphology of the al oy powders. The microstructures of Sn60Pb40 al oy powders produced by the PFC atomization process are completely composed of eutectic, which is made up of both oversaturated αsolid solution and β solid solution. The microstructures of smal size powders are extraordinarily undeveloped dendritic eutectic, in which the large majority of the α phase appears nearly spherical, evidently since the cooling rate is higher and the under-cooling is larger. As for the large size powders, since the cooling rate and undercooling are relatively low, lamel ar α phase apparently increases in the eutectic microstructures of these powders, and there is even typical lamellar eutectic structure clearly observed in some micro-areas. After remelting tests by DTA, the microstructures of smal size powders are transformed, which become composed of large crumby α phase and eutectic (α+β), while those of large size powders change into classical tin-lead structures of primary α phase plus lamellar eutectic (α+β). By studying the microstructures of tin-lead alloy powders, a model has been proposed to predict the microstructure formation of Sn60Pb40 al oy powders.
文摘Conventional planar flow casting(PFC) is one of rapid solidification processes for the fabrication of microcrystalline or amorphous ribbons.Based on the conventional PFC process,the planar flow casting atomization(PFCA) process has been developed,which is a new rapid solidification process for the production of metal powder directly from alloy melts.A prototype experimental apparatus was designed and manufactured.With the apparatus,Sn60Pb40 alloy solder powders were prepared,and the effects of the main technological parameters on the powder size distribution and morphology were experimentally studied.The experimental investigations indicate that the metal powders produced by the PFCA process can be classified by velocity;and fine spherical tin-lead alloy solder powders can be fabricated by adjusting the technical parameters.The new PFCA process has such features as high productivity and efficiency,low energy consumption,simple operation,short technological process,and large gross yield.