Explicit traffic control measures are absent in uncontrolled intersections which make them susceptible to frequent conflicts and resulting collisions between vehicles. In developing countries like India, drivers at su...Explicit traffic control measures are absent in uncontrolled intersections which make them susceptible to frequent conflicts and resulting collisions between vehicles. In developing countries like India, drivers at such intersections do not yield to higher priority movements which cause more crashes between vehicles. The objective of this study is to analyze and model the gap acceptance behavior of minor street drivers at uncontrolled T-intersections considering their aggressive nature. Three intersections in the northeast region of India have been selected as the case study area. Preliminary analysis of the data revealed that drivers behave aggressively, not because they have to wait for a long time at the stop line, but because of their lack of respect for traffic rules. Binary logit models are developed for minor road right turning vehicles which show that gap acceptance behavior is influenced by gap duration, clearing time and aggressive nature of drivers. The equations obtained were used to estimate the critical gaps for aggressive and non-aggressive drivers. Critical gaps are also calculated using an existing method called clearing behavior approach. It is also shown that the estimation of critical gap is more realistic if clearing time and aggressive behavior of drivers are considered.展开更多
By utilizing total magnetic flux φ of the primary and secondary windings of the flyback transformer as a state variable, the discrete-time model of current-mode controlled flyback converter is established, upon which...By utilizing total magnetic flux φ of the primary and secondary windings of the flyback transformer as a state variable, the discrete-time model of current-mode controlled flyback converter is established, upon which the bifurcation behaviors of the converter are analyzed and two boundary classification equations of the orbit state shifting are obtained. The operation state regions of the current-mode controlled flyback converter are well classified by two boundary classification equations. The theoretical analysis results are verified by power electronics simulator (PSIM). The estimation of operation-state regions for the flyback converter is useful for the design of circuit parameters, stability control of chaos, and chaos-based applications.展开更多
We develop a two-relaxation-time (TRT) Lattice Boltzmann model for hydrodynamicequations with variable source terms based on equivalent equilibriumfunctions. A special parametrization of the free relaxation parameter ...We develop a two-relaxation-time (TRT) Lattice Boltzmann model for hydrodynamicequations with variable source terms based on equivalent equilibriumfunctions. A special parametrization of the free relaxation parameter is derived. Itcontrols, in addition to the non-dimensional hydrodynamic numbers, any TRT macroscopicsteady solution and governs the spatial discretization of transient flows. Inthis framework, the multi-reflection approach [16, 18] is generalized and extended forDirichlet velocity, pressure and mixed (pressure/tangential velocity) boundary conditions.We propose second and third-order accurate boundary schemes and adapt themfor corners. The boundary schemes are analyzed for exactness of the parametrization,uniqueness of their steady solutions, support of staggered invariants and for the effectiveaccuracy in case of time dependent boundary conditions and transient flow.When the boundary scheme obeys the parametrization properly, the derived permeabilityvalues become independent of the selected viscosity for any porous structureand can be computed efficiently. The linear interpolations [5, 46] are improved withrespect to this property.展开更多
文摘Explicit traffic control measures are absent in uncontrolled intersections which make them susceptible to frequent conflicts and resulting collisions between vehicles. In developing countries like India, drivers at such intersections do not yield to higher priority movements which cause more crashes between vehicles. The objective of this study is to analyze and model the gap acceptance behavior of minor street drivers at uncontrolled T-intersections considering their aggressive nature. Three intersections in the northeast region of India have been selected as the case study area. Preliminary analysis of the data revealed that drivers behave aggressively, not because they have to wait for a long time at the stop line, but because of their lack of respect for traffic rules. Binary logit models are developed for minor road right turning vehicles which show that gap acceptance behavior is influenced by gap duration, clearing time and aggressive nature of drivers. The equations obtained were used to estimate the critical gaps for aggressive and non-aggressive drivers. Critical gaps are also calculated using an existing method called clearing behavior approach. It is also shown that the estimation of critical gap is more realistic if clearing time and aggressive behavior of drivers are considered.
基金supported by the National Natural Science Foundation of China under Grant No.51277017the Natural Science Foundation of Changzhou,Jiangsu Province,China under Grant No.CJ20120004
文摘By utilizing total magnetic flux φ of the primary and secondary windings of the flyback transformer as a state variable, the discrete-time model of current-mode controlled flyback converter is established, upon which the bifurcation behaviors of the converter are analyzed and two boundary classification equations of the orbit state shifting are obtained. The operation state regions of the current-mode controlled flyback converter are well classified by two boundary classification equations. The theoretical analysis results are verified by power electronics simulator (PSIM). The estimation of operation-state regions for the flyback converter is useful for the design of circuit parameters, stability control of chaos, and chaos-based applications.
文摘We develop a two-relaxation-time (TRT) Lattice Boltzmann model for hydrodynamicequations with variable source terms based on equivalent equilibriumfunctions. A special parametrization of the free relaxation parameter is derived. Itcontrols, in addition to the non-dimensional hydrodynamic numbers, any TRT macroscopicsteady solution and governs the spatial discretization of transient flows. Inthis framework, the multi-reflection approach [16, 18] is generalized and extended forDirichlet velocity, pressure and mixed (pressure/tangential velocity) boundary conditions.We propose second and third-order accurate boundary schemes and adapt themfor corners. The boundary schemes are analyzed for exactness of the parametrization,uniqueness of their steady solutions, support of staggered invariants and for the effectiveaccuracy in case of time dependent boundary conditions and transient flow.When the boundary scheme obeys the parametrization properly, the derived permeabilityvalues become independent of the selected viscosity for any porous structureand can be computed efficiently. The linear interpolations [5, 46] are improved withrespect to this property.