当齿轮发生故障时,时变啮合刚度的变化能够反映齿轮故障特征大小。因此,时变啮合刚度在齿轮传动过程中是一个重要的动力学参数。提出一种新的齿根裂纹啮合刚度计算方法,即解析有限元法(Analytical-finite element method, A-FM)。考虑...当齿轮发生故障时,时变啮合刚度的变化能够反映齿轮故障特征大小。因此,时变啮合刚度在齿轮传动过程中是一个重要的动力学参数。提出一种新的齿根裂纹啮合刚度计算方法,即解析有限元法(Analytical-finite element method, A-FM)。考虑到齿轮发生故障时,啮合刚度解析模型计算精度较低,将应力强度因子引入裂纹齿轮的啮合刚度计算过程。首先定义应力强度因子与啮合刚度之间的关系,通过建立齿轮接触模型计算裂纹尖端附近的应力强度因子,然后将计算结果替代解析模型中故障刚度部分。由于应力强度因子能够敏感地识别齿根裂纹的局部微小变化,故该方法相比于解析法具有更高的计算精度,相比于有限元法具备更快的计算效率。同时,建立6自由度动力学模型,通过对其振动响应进行分析,仿真结果验证了所提方法的可行性。展开更多
文摘当齿轮发生故障时,时变啮合刚度的变化能够反映齿轮故障特征大小。因此,时变啮合刚度在齿轮传动过程中是一个重要的动力学参数。提出一种新的齿根裂纹啮合刚度计算方法,即解析有限元法(Analytical-finite element method, A-FM)。考虑到齿轮发生故障时,啮合刚度解析模型计算精度较低,将应力强度因子引入裂纹齿轮的啮合刚度计算过程。首先定义应力强度因子与啮合刚度之间的关系,通过建立齿轮接触模型计算裂纹尖端附近的应力强度因子,然后将计算结果替代解析模型中故障刚度部分。由于应力强度因子能够敏感地识别齿根裂纹的局部微小变化,故该方法相比于解析法具有更高的计算精度,相比于有限元法具备更快的计算效率。同时,建立6自由度动力学模型,通过对其振动响应进行分析,仿真结果验证了所提方法的可行性。