Based on input-output approach, the robust stability and stabilization problems for uncertain singular systems with time-varying delays are investigated. The parameter uncertainties are assumed to be norm-bounded and ...Based on input-output approach, the robust stability and stabilization problems for uncertain singular systems with time-varying delays are investigated. The parameter uncertainties are assumed to be norm-bounded and the time-varying delays include both discrete delay and distributed delay. By introducing a new input-output model, the time-delay system is embedded in a family of systems with a forward system without time delay and a dynamical feedback uncertainty. A sufficient and necessary condition, which guarantees the system regular, impulse-free and stable for all admissible uncertainties, is obtained. Based on the strict linear matrix inequality, the desired robust state feedback controller is also obtained. Finally, a numerical example is provided to demonstrate the application of the proposed method.展开更多
The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for...The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for the nominal discrete singular delay systems to be regular, causal and stable by employing the linear matrix inequality (LMI) approach. It is shown that the newly proposed criterion can provide less conservative results than some existing ones. Then, with this criterion, the problems of robust stability and robust stabilization for uncertain discrete singular delay systems are solved, and the delay-dependent LMI conditions are obtained. Finally, numerical examples are given to illustrate the effectiveness of the proposed approach.展开更多
A new method in which the consensus algorithm is used to solve the coordinate control problems of leaderless multiple autonomous underwater vehicles(multi-AUVs) with double independent Markovian switching communicat...A new method in which the consensus algorithm is used to solve the coordinate control problems of leaderless multiple autonomous underwater vehicles(multi-AUVs) with double independent Markovian switching communication topologies and time-varying delays among the underwater sensors is investigated.This is accomplished by first dividing the communication topology into two different switching parts,i.e.,velocity and position,to reduce the data capacity per data package sent between the multi-AUVs in the ocean.Then,the state feedback linearization is used to simplify and rewrite the complex nonlinear and coupled mathematical model of the AUVs into a double-integrator dynamic model.Consequently,coordinate control of the multi-AUVs is regarded as an approximating consensus problem with various time-varying delays and velocity and position topologies.Considering these factors,sufficient conditions of consensus control are proposed and analyzed and the stability of the multi-AUVs is proven by Lyapunov-Krasovskii theorem.Finally,simulation results that validate the theoretical results are presented.展开更多
研究了具有时变时滞与多数据包丢失的网络控制系统(networked control systems,NCSs)的量化H_∞控制问题.同时考虑传感器-控制器间的测量通道及控制器-执行器间的控制通道的多数据包丢失,并将其用满足Bernoulli分布的随机变量来表示.控...研究了具有时变时滞与多数据包丢失的网络控制系统(networked control systems,NCSs)的量化H_∞控制问题.同时考虑传感器-控制器间的测量通道及控制器-执行器间的控制通道的多数据包丢失,并将其用满足Bernoulli分布的随机变量来表示.控制输入信号和测量输出信号分别在传感器和控制器两侧进行对数量化,量化误差描述为扇区有界不确定性.利用Lyapunov理论和线性矩阵不等式方法,得到了使得闭环NCSs满足一定H_∞性能指标的均方意义下指数稳定充分条件,并给出了基于观测器的时滞相关控制器设计方法.最后,通过实例证明了该方法的有效性.展开更多
基金Project supported by the Key Program of the National NaturalScience Foundation of China (No. 60434020)the National Natural Science Foundation of China (No. 60604003)
文摘Based on input-output approach, the robust stability and stabilization problems for uncertain singular systems with time-varying delays are investigated. The parameter uncertainties are assumed to be norm-bounded and the time-varying delays include both discrete delay and distributed delay. By introducing a new input-output model, the time-delay system is embedded in a family of systems with a forward system without time delay and a dynamical feedback uncertainty. A sufficient and necessary condition, which guarantees the system regular, impulse-free and stable for all admissible uncertainties, is obtained. Based on the strict linear matrix inequality, the desired robust state feedback controller is also obtained. Finally, a numerical example is provided to demonstrate the application of the proposed method.
基金supported by Research Foundation of Education Bureau of Shannxi Province, PRC(No.2010JK400)
文摘The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for the nominal discrete singular delay systems to be regular, causal and stable by employing the linear matrix inequality (LMI) approach. It is shown that the newly proposed criterion can provide less conservative results than some existing ones. Then, with this criterion, the problems of robust stability and robust stabilization for uncertain discrete singular delay systems are solved, and the delay-dependent LMI conditions are obtained. Finally, numerical examples are given to illustrate the effectiveness of the proposed approach.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51679057,51309067,and 51609048)the Outstanding Youth Science Foundation of Heilongjiang Providence of China(Grant No.JC2016007)the Natural Science Foundation of Heilongjiang Province,China(Grant No.E2016020)
文摘A new method in which the consensus algorithm is used to solve the coordinate control problems of leaderless multiple autonomous underwater vehicles(multi-AUVs) with double independent Markovian switching communication topologies and time-varying delays among the underwater sensors is investigated.This is accomplished by first dividing the communication topology into two different switching parts,i.e.,velocity and position,to reduce the data capacity per data package sent between the multi-AUVs in the ocean.Then,the state feedback linearization is used to simplify and rewrite the complex nonlinear and coupled mathematical model of the AUVs into a double-integrator dynamic model.Consequently,coordinate control of the multi-AUVs is regarded as an approximating consensus problem with various time-varying delays and velocity and position topologies.Considering these factors,sufficient conditions of consensus control are proposed and analyzed and the stability of the multi-AUVs is proven by Lyapunov-Krasovskii theorem.Finally,simulation results that validate the theoretical results are presented.
文摘研究了具有时变时滞与多数据包丢失的网络控制系统(networked control systems,NCSs)的量化H_∞控制问题.同时考虑传感器-控制器间的测量通道及控制器-执行器间的控制通道的多数据包丢失,并将其用满足Bernoulli分布的随机变量来表示.控制输入信号和测量输出信号分别在传感器和控制器两侧进行对数量化,量化误差描述为扇区有界不确定性.利用Lyapunov理论和线性矩阵不等式方法,得到了使得闭环NCSs满足一定H_∞性能指标的均方意义下指数稳定充分条件,并给出了基于观测器的时滞相关控制器设计方法.最后,通过实例证明了该方法的有效性.