期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度卷积神经网络与WPT-PWVD的轴承故障智能诊断 被引量:8
1
作者 黄鑫 陈仁祥 +3 位作者 杨星 张霞 黄钰 余腾伟 《振动与冲击》 EI CSCD 北大核心 2020年第16期236-243,共8页
针对轴承故障诊断中人工提取特征依赖经验,且泛化性和自适应能力弱等问题,提出一种基于深度卷积神经网络(DCNN)与WPT-PWVD的智能故障诊断新方法。①利用小波包变换(WPT)将轴承故障信号进行自适应分解以提取有效高频成分并进行重构;②利... 针对轴承故障诊断中人工提取特征依赖经验,且泛化性和自适应能力弱等问题,提出一种基于深度卷积神经网络(DCNN)与WPT-PWVD的智能故障诊断新方法。①利用小波包变换(WPT)将轴承故障信号进行自适应分解以提取有效高频成分并进行重构;②利用希尔伯特算法对重构信号做包络解调并进行伪魏格纳分布(PWVD)以得到能揭示轴承主要故障信息的时频图;③构建DCNN网络对轴承故障时频图自动学习提取故障特征,并通过在DCNN特征输出层后添加的Softmax多分类器进行网络参数微调,将特征自动学习提取与故障分类融为一体,实现轴承故障智能诊断。使用所提方法对不同工况、不同故障程度及不同故障类型的轴承进行诊断,结果证明了所提方法诊断精度高,且泛化能力强。 展开更多
关键词 深度卷积神经网络(DCNN) 小波包变换(WPT) 伪魏格纳分布(PWVD) 时频图 故障智能诊断
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部