期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Nonconforming Mixed FEM Analysis for Multi-Term Time-Fractional Mixed Sub-Diffusion and Diffusion-Wave Equation with Time-Space Coupled Derivative
1
作者 Fangfang Cao Yanmin Zhao +2 位作者 Fenling Wang Yanhua Shi Changhui Yao 《Advances in Applied Mathematics and Mechanics》 SCIE 2023年第2期322-358,共37页
The main contents of this paper are to establish a finite element fully-discrete approximate scheme for multi-term time-fractional mixed sub-diffusion and diffusionwave equation with spatial variable coefficient,which... The main contents of this paper are to establish a finite element fully-discrete approximate scheme for multi-term time-fractional mixed sub-diffusion and diffusionwave equation with spatial variable coefficient,which contains a time-space coupled derivative.The nonconforming EQ^(rot)_(1)element and Raviart-Thomas element are employed for spatial discretization,and L1 time-stepping method combined with the Crank-Nicolson scheme are applied for temporal discretization.Firstly,based on some significant lemmas,the unconditional stability analysis of the fully-discrete scheme is acquired.With the assistance of the interpolation operator I_(h)and projection operator Rh,superclose and convergence results of the variable u in H^(1)-norm and the flux~p=k_(5)(x)ru(x,t)in L^(2)-norm are obtained,respectively.Furthermore,the global superconvergence results are derived by applying the interpolation postprocessing technique.Finally,the availability and accuracy of the theoretical analysis are corroborated by experimental results of numerical examples on anisotropic meshes. 展开更多
关键词 Multi-term time-fractional mixed sub-diffusion and diffusion-wave equation nonconforming EQ^(rot)_(1)mixed FEM L1 approximation and Crank-Nicolson scheme convergence and superconvergence
原文传递
ANISOTROPIC EQ^(ROT)_(1) FINITE ELEMENT APPROXIMATION FOR A MULTI-TERM TIME-FRACTIONAL MIXED SUB-DIFFUSION AND DIFFUSION-WAVE EQUATION
2
作者 Huijun Fan Yanmin Zhao +2 位作者 Fenling Wang Yanhua Shi Fawang Liu 《Journal of Computational Mathematics》 SCIE CSCD 2023年第3期458-481,共24页
By employing EQ^(ROT)_(1) nonconforming finite element,the numerical approximation is presented for multi-term time-fractional mixed sub-diffusion and diffusion-wave equation on anisotropic meshes.Comparing with the m... By employing EQ^(ROT)_(1) nonconforming finite element,the numerical approximation is presented for multi-term time-fractional mixed sub-diffusion and diffusion-wave equation on anisotropic meshes.Comparing with the multi-term time-fractional sub-diffusion equation or diffusion-wave equation,the mixed case contains a special time-space coupled derivative,which leads to many difficulties in numerical analysis.Firstly,a fully discrete scheme is established by using nonconforming finite element method(FEM)in spatial direction and L1 approximation coupled with Crank-Nicolson(L1-CN)scheme in temporal direction.Furthermore,the fully discrete scheme is proved to be unconditional stable.Besides,convergence and superclose results are derived by using the properties of EQ^(ROT)_(1) nonconforming finite element.What's more,the global superconvergence is obtained via the interpolation postprocessing technique.Finally,several numerical results are provided to demonstrate the theoretical analysis on anisotropic meshes. 展开更多
关键词 Multi-term time-fractional mixed sub-diffusion and diffusion-wave equation Nonconforming FEM L1-CN scheme Anisotropic meshes Convergence and superconvergence
原文传递
时间分数阶扩散波方程的无单元Galerkin法分析 被引量:2
3
作者 吴迪 李小林 《应用数学和力学》 CSCD 北大核心 2022年第2期215-223,共9页
利用无单元Galerkin法,对Caputo意义下的时间分数阶扩散波方程进行了数值求解和相应误差理论分析.首先用L1逼近公式离散该方程中的时间变量,将时间分数阶扩散波方程转化成与时间无关的整数阶微分方程;然后采用罚函数方法处理Dirichlet... 利用无单元Galerkin法,对Caputo意义下的时间分数阶扩散波方程进行了数值求解和相应误差理论分析.首先用L1逼近公式离散该方程中的时间变量,将时间分数阶扩散波方程转化成与时间无关的整数阶微分方程;然后采用罚函数方法处理Dirichlet边界条件,并利用无单元Galerkin法离散整数阶微分方程;最后推导该方程无单元Galerkin法的误差估计公式.数值算例证明了该方法的精度和效果. 展开更多
关键词 时间分数阶扩散波方程 无单元Galerkin法 L1逼近公式 误差估计
下载PDF
Spatial High Accuracy Analysis of FEM for Two-dimensional Multi-term Time-fractional Diffusion-wave Equations
4
作者 Ya-bing WEI Yan-min ZHAO +2 位作者 Zheng-guang SHI Fen-ling WANG Yi-fa TANG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2018年第4期828-841,共14页
In this paper, high-order numerical analysis of finite element method(FEM) is presented for twodimensional multi-term time-fractional diffusion-wave equation(TFDWE). First of all, a fully-discrete approximate sche... In this paper, high-order numerical analysis of finite element method(FEM) is presented for twodimensional multi-term time-fractional diffusion-wave equation(TFDWE). First of all, a fully-discrete approximate scheme for multi-term TFDWE is established, which is based on bilinear FEM in spatial direction and Crank-Nicolson approximation in temporal direction, respectively. Then the proposed scheme is proved to be unconditionally stable and convergent. And then, rigorous proofs are given here for superclose properties in H-1-norm and temporal convergence in L-2-norm with order O(h-2+ τ-(3-α)), where h and τ are the spatial size and time step, respectively. At the same time, theoretical analysis of global superconvergence in H-1-norm is derived by interpolation postprocessing technique. At last, numerical example is provided to demonstrate the theoretical analysis. 展开更多
关键词 multi-term time-fractional diffusion-wave equation bilinear finite element method Crank-Nicolsonapproximation stability convergence and superconvergence
原文传递
时空分数阶扩散波动方程的初值识别问题
5
作者 杨帆 曹英 李晓晓 《数学物理学报(A辑)》 CSCD 北大核心 2023年第2期377-398,共22页
研究具有时空分数阶导数的扩散波动方程的初值识别反问题.分析该反问题的不适定性,给出条件稳定性结果.利用Tikhonov正则化方法恢复解的稳定性,并分别给出在先验和后验正则化参数选取规则下,正则解和精确解之间的误差估计.通过数值算例... 研究具有时空分数阶导数的扩散波动方程的初值识别反问题.分析该反问题的不适定性,给出条件稳定性结果.利用Tikhonov正则化方法恢复解的稳定性,并分别给出在先验和后验正则化参数选取规则下,正则解和精确解之间的误差估计.通过数值算例说明Tikhonov正则化方法求解此类反问题非常有效. 展开更多
关键词 时空分数阶扩散波动方程 不适定问题 初值识别 TIKHONOV正则化方法 误差估计
下载PDF
一类半线性时间分数阶扩散-波动方程解的整体存在唯一性
6
作者 何鑫海 刘梅 杨晗 《数学物理学报(A辑)》 CSCD 北大核心 2022年第6期1705-1718,共14页
该文研究一类半线性时间分数阶扩散-波动方程的柯西问题,基于线性问题的L^(r)-L^(q)估计,通过整体迭代法,在小初值的情况下研究非线性项指数对于解的整体存在性影响,在指数满足一定条件的情况下证明了整体解的存在唯一性.
关键词 时间分数阶扩散-波动方程 柯西问题 小初值 整体解
下载PDF
高维非齐次时间分数阶扩散-波动方程的解析解问题 被引量:1
7
作者 刘文斌 刘冬兵 《数学的实践与认识》 北大核心 2015年第4期227-231,共5页
分数阶微积分是专门研究任意阶积分和微分的数学性质及其应用的领域,是传统的整数阶微积分的推广,分数阶微分方程是含有非整数阶导数的方程.时间分数阶扩散-波动方程可以用来模拟由传统的扩散-波动方程演变而来的反常扩散方程.考虑在有... 分数阶微积分是专门研究任意阶积分和微分的数学性质及其应用的领域,是传统的整数阶微积分的推广,分数阶微分方程是含有非整数阶导数的方程.时间分数阶扩散-波动方程可以用来模拟由传统的扩散-波动方程演变而来的反常扩散方程.考虑在有限区间上高维非齐次时间分数阶扩散-波动方程的初边值问题.利用分离变量法,导出了高维非齐次时间分数阶扩散-波动方程初边值问题的基本解. 展开更多
关键词 时间分数阶扩散-波动方程 解析解 初边值问题 分离变量法 CAPUTO导数
原文传递
四阶分数阶扩散波动方程的两网格混合元快速算法
8
作者 王金凤 尹保利 +1 位作者 刘洋 李宏 《计算数学》 CSCD 北大核心 2022年第4期496-507,共12页
本文研究四阶分数阶扩散波动方程模型的基于新混合元方法的快速两网格算法.讨论该方法的稳定性,推导三个未知函数的L^(2)模意义下的最优误差估计.最后通过数值例子验证两网格混合元算法的高效性和理论结果的正确性。
关键词 四阶时间分数阶扩散波动方程 修正L1公式 两网格算法 混合元方法 误差估计
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部