Fully resolved simulations of particulate and aggregative fluidization systems are performed suc-cessfully with the so-called combined lattice Boltzmann method and time-driven hard-sphere model (LBM-TDHS). In this m...Fully resolved simulations of particulate and aggregative fluidization systems are performed suc-cessfully with the so-called combined lattice Boltzmann method and time-driven hard-sphere model (LBM-TDHS). In this method, the discrete particle phase is described by time-driven hard-sphere model, and the governing equations of the continuous fluid phase are solved with lattice Boltz-mann method. Particle-fluid coupling is implemented by immersed moving boundary method. Time averaged flow structure of the simulated results show the formation of core-annulus structure and sigmoid distribution of voidage in the axial direction, which are typical phenomena in fluidization systems. Combining the results of the simulation, the energy consumption Nst for suspending and transporting solids is calculated from the direct numerical simulation (DNS) of fluidization, and the stability criterion Nst/NT = rain proposed in EMMS/bubbling model is verified numerically. Further-more the numerical results show that the value of Nst/NT in particulate fiuidization is much higher than that in aggregative fluidization, but Nst/NT = rain is effective for both particulate and aggregative fluidization.展开更多
A coupled numerical method for the direct numerical simulation of particle-fluid systems is formulated and implemented, resolving an order of magnitude smaller than particle size. The particle motion is described by t...A coupled numerical method for the direct numerical simulation of particle-fluid systems is formulated and implemented, resolving an order of magnitude smaller than particle size. The particle motion is described by the time-driven hard-sphere model, while the hydrodynamic equations governing fluid flow are solved by the lattice Boltzmann method (LBM), Particle-fluid coupling is realized by an immersed boundary method (IBM), which considers the effect of boundary on surrounding fluid as a restoring force added to the governing equations of the fluid. The proposed scheme is validated in the classical flow-around-cylinder simulations, and preliminary application of this scheme to fluidization is reported, demonstrating it to be a promising computational strategy for better understanding complex behavior in particle-fluid systems.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.21106155the Chinese Academy of Sciences under Grant No.XDA07080303
文摘Fully resolved simulations of particulate and aggregative fluidization systems are performed suc-cessfully with the so-called combined lattice Boltzmann method and time-driven hard-sphere model (LBM-TDHS). In this method, the discrete particle phase is described by time-driven hard-sphere model, and the governing equations of the continuous fluid phase are solved with lattice Boltz-mann method. Particle-fluid coupling is implemented by immersed moving boundary method. Time averaged flow structure of the simulated results show the formation of core-annulus structure and sigmoid distribution of voidage in the axial direction, which are typical phenomena in fluidization systems. Combining the results of the simulation, the energy consumption Nst for suspending and transporting solids is calculated from the direct numerical simulation (DNS) of fluidization, and the stability criterion Nst/NT = rain proposed in EMMS/bubbling model is verified numerically. Further-more the numerical results show that the value of Nst/NT in particulate fiuidization is much higher than that in aggregative fluidization, but Nst/NT = rain is effective for both particulate and aggregative fluidization.
基金sponsored by Ministry of Finance under the grant ZDYZ2008-2National Key Science and Technology Project under the grant 2008ZX05014-003-006HZthe Chinese Academy of Sciences under the grant KGCX2-YW-124
文摘A coupled numerical method for the direct numerical simulation of particle-fluid systems is formulated and implemented, resolving an order of magnitude smaller than particle size. The particle motion is described by the time-driven hard-sphere model, while the hydrodynamic equations governing fluid flow are solved by the lattice Boltzmann method (LBM), Particle-fluid coupling is realized by an immersed boundary method (IBM), which considers the effect of boundary on surrounding fluid as a restoring force added to the governing equations of the fluid. The proposed scheme is validated in the classical flow-around-cylinder simulations, and preliminary application of this scheme to fluidization is reported, demonstrating it to be a promising computational strategy for better understanding complex behavior in particle-fluid systems.