土地利用/覆被变化(Land Use and Cover Change,LUCC)模拟是LUCC研究的主要内容和重要手段。时间间隔是模拟过程中的重要参数,对模拟结果精度有何影响,有待深入研究。以新疆玛纳斯河流域典型绿洲区四道河子镇为例,基于遥感影像提取1975...土地利用/覆被变化(Land Use and Cover Change,LUCC)模拟是LUCC研究的主要内容和重要手段。时间间隔是模拟过程中的重要参数,对模拟结果精度有何影响,有待深入研究。以新疆玛纳斯河流域典型绿洲区四道河子镇为例,基于遥感影像提取1975、1985、1995、2000、2005、2010年和2015年的土地利用数据,分别以20 a、15 a、10 a和5 a为时间间隔构建CA-Markov模型,模拟2015年土地利用结构,定量探讨时间间隔对CA-Markov模型精度的影响。结果表明:1975-2015年,四道河子镇LUCC以耕地和草地为主,期间耕地、建设用地迅速扩张,林地、草地和未利用地大幅减少,水域在1985-2000年呈现小幅增长。耕地的增加和草地及林地的减少是研究区近40 a LUCC最显著的特征。对比模拟结果与实际结果,时间间隔为20 a、15 a、10 a、5 a的TFOM分别为70.35%,69.18%,76.32%和88.00%。基于2005-2010年转移概率的模拟结果更接近于2015年实际结果,适合模拟四道河子镇未来的土地利用变化。土地利用模拟应依据区域LUCC特征确定最佳的时间间隔,提高模拟精度。展开更多
In this work, a simulated aircraft fuel tank inerting system has been successfully estab- lished based on a model tank. Experiments were conducted to investigate the influences of different operating parameters on the...In this work, a simulated aircraft fuel tank inerting system has been successfully estab- lished based on a model tank. Experiments were conducted to investigate the influences of different operating parameters on the inerting effectiveness of the system, including flow rate of the inert gas (nitrogen-enriched air), inert gas concentration, fuel load of the tank and different inerting approaches. The experimental results show that under the same operating conditions, the time span of a complete inerting process decreased as the flow rate of inert gas was increased; the time span using the inert gas with 5% oxygen concentration was much longer than that using pure nitrogen; when the fuel tank was inerted using the ullage washing approach, the time span increased as the fuel load was decreased; the ullage washing approach showed the best inerting performance when the time span of a complete inerting process was the evaluation criterion, but when the decrease of dissolved oxygen concentration in the fuel was also considered to characterize the inerting effective- ness, the approach of ullage washing and fuel scrubbing at the same time was the most effective.展开更多
流数据作为一种新型数据,在各个领域均有应用,其快速、大量及持续不断的特点使得单遍精准扫描成为在线学习算法的必备特质.在流数据不断产生过程中,往往会发生概念漂移,目前对于概念漂移节点检测的研究相对成熟,然而实际问题中学习环境...流数据作为一种新型数据,在各个领域均有应用,其快速、大量及持续不断的特点使得单遍精准扫描成为在线学习算法的必备特质.在流数据不断产生过程中,往往会发生概念漂移,目前对于概念漂移节点检测的研究相对成熟,然而实际问题中学习环境因素朝不同方向发展往往会导致流数据中概念漂移类别的多样性,这给流数据挖掘及在线学习带来了新的挑战.针对这个问题,提出一种基于时序窗口的概念漂移类别检测(concept drift class detection based on time window,CD-TW)方法.该方法借助栈和队列对流数据进行存取,借助窗口机制对流数据进行分块学习.首先创建2个分别加载历史数据和当前数据的基础节点时序窗口,通过比较二者所包含数据的分布变化情况来检测概念漂移节点.然后创建加载漂移节点后部分数据的跨度时序窗口,通过分析该窗口中数据分布的稳定性检测漂移跨度,进而判断概念漂移类别.实验结果表明该方法不仅能够精确定位概念漂移节点,同时在漂移类别判断方面也表现出良好性能.展开更多
文摘土地利用/覆被变化(Land Use and Cover Change,LUCC)模拟是LUCC研究的主要内容和重要手段。时间间隔是模拟过程中的重要参数,对模拟结果精度有何影响,有待深入研究。以新疆玛纳斯河流域典型绿洲区四道河子镇为例,基于遥感影像提取1975、1985、1995、2000、2005、2010年和2015年的土地利用数据,分别以20 a、15 a、10 a和5 a为时间间隔构建CA-Markov模型,模拟2015年土地利用结构,定量探讨时间间隔对CA-Markov模型精度的影响。结果表明:1975-2015年,四道河子镇LUCC以耕地和草地为主,期间耕地、建设用地迅速扩张,林地、草地和未利用地大幅减少,水域在1985-2000年呈现小幅增长。耕地的增加和草地及林地的减少是研究区近40 a LUCC最显著的特征。对比模拟结果与实际结果,时间间隔为20 a、15 a、10 a、5 a的TFOM分别为70.35%,69.18%,76.32%和88.00%。基于2005-2010年转移概率的模拟结果更接近于2015年实际结果,适合模拟四道河子镇未来的土地利用变化。土地利用模拟应依据区域LUCC特征确定最佳的时间间隔,提高模拟精度。
文摘In this work, a simulated aircraft fuel tank inerting system has been successfully estab- lished based on a model tank. Experiments were conducted to investigate the influences of different operating parameters on the inerting effectiveness of the system, including flow rate of the inert gas (nitrogen-enriched air), inert gas concentration, fuel load of the tank and different inerting approaches. The experimental results show that under the same operating conditions, the time span of a complete inerting process decreased as the flow rate of inert gas was increased; the time span using the inert gas with 5% oxygen concentration was much longer than that using pure nitrogen; when the fuel tank was inerted using the ullage washing approach, the time span increased as the fuel load was decreased; the ullage washing approach showed the best inerting performance when the time span of a complete inerting process was the evaluation criterion, but when the decrease of dissolved oxygen concentration in the fuel was also considered to characterize the inerting effective- ness, the approach of ullage washing and fuel scrubbing at the same time was the most effective.
文摘流数据作为一种新型数据,在各个领域均有应用,其快速、大量及持续不断的特点使得单遍精准扫描成为在线学习算法的必备特质.在流数据不断产生过程中,往往会发生概念漂移,目前对于概念漂移节点检测的研究相对成熟,然而实际问题中学习环境因素朝不同方向发展往往会导致流数据中概念漂移类别的多样性,这给流数据挖掘及在线学习带来了新的挑战.针对这个问题,提出一种基于时序窗口的概念漂移类别检测(concept drift class detection based on time window,CD-TW)方法.该方法借助栈和队列对流数据进行存取,借助窗口机制对流数据进行分块学习.首先创建2个分别加载历史数据和当前数据的基础节点时序窗口,通过比较二者所包含数据的分布变化情况来检测概念漂移节点.然后创建加载漂移节点后部分数据的跨度时序窗口,通过分析该窗口中数据分布的稳定性检测漂移跨度,进而判断概念漂移类别.实验结果表明该方法不仅能够精确定位概念漂移节点,同时在漂移类别判断方面也表现出良好性能.