期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
应用小波能量熵的人体活动时序自动标记方法
被引量:
1
1
作者
梁冠豪
罗庆生
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2019年第2期147-154,共8页
在基于可穿戴传感器的人体活动识别研究中采用的传统人工标记原始数据的方法步骤繁琐、效率低下,在一定程度上制约了相关研究的深入开展.为此,特提出一种基于小波能量熵的人体活动时间序列自动标记方法.该方法采用分布于人体躯干9处主...
在基于可穿戴传感器的人体活动识别研究中采用的传统人工标记原始数据的方法步骤繁琐、效率低下,在一定程度上制约了相关研究的深入开展.为此,特提出一种基于小波能量熵的人体活动时间序列自动标记方法.该方法采用分布于人体躯干9处主要部位的多惯性测量单元同步采集17种人体活动加速度与角速度数据,通过滑窗对人体前腰部合加速度数据分段并使用多分辨率分析计算滑窗内小波能量熵,然后利用采集序列的时间约束选择初步分割阈值,对滑窗小波能量熵随时间变化曲线进行自动分割,并最终实现对6位受试人体活动时序数据的自动标记.结果表明,该方法的标记平均准确率为95.82%,总耗时约18.6 min,比人工标记平均耗时76.75 min减少75.76%,标记效率显著改善.
展开更多
关键词
可穿戴传感器
人体活动识别
人体活动加速度
小波能量熵
时序自动分割
时序自动标记
下载PDF
职称材料
题名
应用小波能量熵的人体活动时序自动标记方法
被引量:
1
1
作者
梁冠豪
罗庆生
机构
北京理工大学机电学院
出处
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2019年第2期147-154,共8页
基金
国家自然科学基金青年科学项目(61501034)
文摘
在基于可穿戴传感器的人体活动识别研究中采用的传统人工标记原始数据的方法步骤繁琐、效率低下,在一定程度上制约了相关研究的深入开展.为此,特提出一种基于小波能量熵的人体活动时间序列自动标记方法.该方法采用分布于人体躯干9处主要部位的多惯性测量单元同步采集17种人体活动加速度与角速度数据,通过滑窗对人体前腰部合加速度数据分段并使用多分辨率分析计算滑窗内小波能量熵,然后利用采集序列的时间约束选择初步分割阈值,对滑窗小波能量熵随时间变化曲线进行自动分割,并最终实现对6位受试人体活动时序数据的自动标记.结果表明,该方法的标记平均准确率为95.82%,总耗时约18.6 min,比人工标记平均耗时76.75 min减少75.76%,标记效率显著改善.
关键词
可穿戴传感器
人体活动识别
人体活动加速度
小波能量熵
时序自动分割
时序自动标记
Keywords
wearable
sensors
human
activity
recognition
human
motion
acceleration
wavelet
energy
entropy
time
series
automatic
segmentation
time
series
automatic
labeling
分类号
TP212 [自动化与计算机技术—检测技术与自动化装置]
TP181 [自动化与计算机技术—控制科学与工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
应用小波能量熵的人体活动时序自动标记方法
梁冠豪
罗庆生
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2019
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部