A measuring method of the echo reduction of passive materials by using the time reversal(TR) technique is presented. To measure the echo reduction of a sample with this approach, the received signals are firstly foc...A measuring method of the echo reduction of passive materials by using the time reversal(TR) technique is presented. To measure the echo reduction of a sample with this approach, the received signals are firstly focused according to the TR theory. Then, the sample is removed and the TR processing is again employed to realize the focus of the received signal.Finally, the echo reduction of the sample is evaluated with these focusing signals. Besides, to calibrate the measured echo reduction via the TR technique, a standard sample is employed to measure a constant coefficient that only depends on the measurement environment. An aluminum plate sample and a steel plate sample with the same size of 1.1 mxl.O m x0.005 m axe tested in a wave guide tank. The experimental results show that the calibrated values are well consistent with theoretical results under the free field at the measured frequency range of0.5-20 kHz. The relative errors of all the measured values are less than 10% and the values of the expanded uncertainty are less than 1.5 dB. The TR processing focuses the energy in spatial domain and temporal domain, so it can be used to measure the echo reduction of passive materials in the environments with reflections induced by boundaries and low frequency sources.展开更多
A method using the time reversal(TR) technique to measure the insertion loss(IL) of passive materials is presented.Firstly the received signals are focused according to the TR theory when there is not a sample bet...A method using the time reversal(TR) technique to measure the insertion loss(IL) of passive materials is presented.Firstly the received signals are focused according to the TR theory when there is not a sample between the source and the received array.Then,the sample is placed near the received array and the TR processing is again employed to realize the focus of the received signal.Finally,the IL of the sample is evaluated from these focusing signals.Because the TR processing can focus the energy in spatial domain and time domain,the method can be used to measure acoustic properties of passive materials in a waveguide tank with reflections induced by boundaries or with low source frequencies.Two samples with the same size of 1.1 m×1.0 m×5 mm are tested in the waveguide tank.The method is demonstrated by the comparison of the theoretical and the experimental results in the measured frequency range of 1-20 kHz.展开更多
In this paper, we propose a downlink transmission and receiving scheme for interleave-division multiple access (IDMA) system based on time-division duplexing (TDD) mode and time-reversal (TR) technique. The prop...In this paper, we propose a downlink transmission and receiving scheme for interleave-division multiple access (IDMA) system based on time-division duplexing (TDD) mode and time-reversal (TR) technique. The proposed scheme uses the time-reversed version of the channel impulse responses (CIR) obtained from the transmitted signal at base uplink to pre-process the station. By exploiting the weak correlations of fading channels for different user ends (UE), it is helpful to alleviate the multi-user interference (MUI) and co-channel interference (CCI). Moreover, the application of the TR technique in a multiple input-single output (MISO) configuration can reduce the delay spread of the channel impulse response, and mitigate inter-symbol interference (ISI). The UE can be simplified by canceling the iteration operation. Thus the data detection of the proposed scheme is rather simple as compared with the traditional IDMA, the complexity and computational load of UE is decreased substantially, and the proposed scheme provides a great deal of privacy and security to mobile users.展开更多
文摘A measuring method of the echo reduction of passive materials by using the time reversal(TR) technique is presented. To measure the echo reduction of a sample with this approach, the received signals are firstly focused according to the TR theory. Then, the sample is removed and the TR processing is again employed to realize the focus of the received signal.Finally, the echo reduction of the sample is evaluated with these focusing signals. Besides, to calibrate the measured echo reduction via the TR technique, a standard sample is employed to measure a constant coefficient that only depends on the measurement environment. An aluminum plate sample and a steel plate sample with the same size of 1.1 mxl.O m x0.005 m axe tested in a wave guide tank. The experimental results show that the calibrated values are well consistent with theoretical results under the free field at the measured frequency range of0.5-20 kHz. The relative errors of all the measured values are less than 10% and the values of the expanded uncertainty are less than 1.5 dB. The TR processing focuses the energy in spatial domain and temporal domain, so it can be used to measure the echo reduction of passive materials in the environments with reflections induced by boundaries and low frequency sources.
文摘A method using the time reversal(TR) technique to measure the insertion loss(IL) of passive materials is presented.Firstly the received signals are focused according to the TR theory when there is not a sample between the source and the received array.Then,the sample is placed near the received array and the TR processing is again employed to realize the focus of the received signal.Finally,the IL of the sample is evaluated from these focusing signals.Because the TR processing can focus the energy in spatial domain and time domain,the method can be used to measure acoustic properties of passive materials in a waveguide tank with reflections induced by boundaries or with low source frequencies.Two samples with the same size of 1.1 m×1.0 m×5 mm are tested in the waveguide tank.The method is demonstrated by the comparison of the theoretical and the experimental results in the measured frequency range of 1-20 kHz.
基金the Nature Science Founding of China under Grant. No. 60496313National Basic Research Program of China under Grant No. 2007CB310604.
文摘In this paper, we propose a downlink transmission and receiving scheme for interleave-division multiple access (IDMA) system based on time-division duplexing (TDD) mode and time-reversal (TR) technique. The proposed scheme uses the time-reversed version of the channel impulse responses (CIR) obtained from the transmitted signal at base uplink to pre-process the station. By exploiting the weak correlations of fading channels for different user ends (UE), it is helpful to alleviate the multi-user interference (MUI) and co-channel interference (CCI). Moreover, the application of the TR technique in a multiple input-single output (MISO) configuration can reduce the delay spread of the channel impulse response, and mitigate inter-symbol interference (ISI). The UE can be simplified by canceling the iteration operation. Thus the data detection of the proposed scheme is rather simple as compared with the traditional IDMA, the complexity and computational load of UE is decreased substantially, and the proposed scheme provides a great deal of privacy and security to mobile users.