本文针对某通信运营商部署的PTN设备,结合PTN网络现状,分级建设时间分发点,确定时间分发点位置。按照纯PTN承载、PTN over OTN、PTN中继等场景提出IEEE 1588V2时间同步网的部署方案,保障通信网设备稳定运行,并针对不同的应用场景进行分...本文针对某通信运营商部署的PTN设备,结合PTN网络现状,分级建设时间分发点,确定时间分发点位置。按照纯PTN承载、PTN over OTN、PTN中继等场景提出IEEE 1588V2时间同步网的部署方案,保障通信网设备稳定运行,并针对不同的应用场景进行分析和优劣势比较。展开更多
In feeder automation transformation there are difficulties in equipment and location selection.To help with this,an optimal layout model of feeder automation equipment oriented to the type of fault detection and local...In feeder automation transformation there are difficulties in equipment and location selection.To help with this,an optimal layout model of feeder automation equipment oriented to the type of fault detection and local action is pro-posed.It analyzes the coordination relationship of the three most common types of automation equipment,i.e.,fault indicator,over-current trip switch and non-voltage trip switch in the fault handling process,and the explicit expres-sions of power outage time caused by a fault on different layouts of the above three types of equipment are given.Given constraints of power supply reliability and the goal of minimizing the sum of equipment-related capital invest-ment and power interruption cost,a mixed-integer quadratic programming model for optimal layout is established,in which the functional failure probability of equipment is linearized using the 3δprinciple in statistics.Finally,the basic characteristics of the proposed model are illustrated by different scenarios on the IEEE RBTS-BUS6 system.It can not only take into account fault location and fault isolation to enhance user power consumption perception,but also can guide precise investment to improve the operational quality and efficiency of a power company.展开更多
A new real-time underwater equipment location method adopting an electric field induced by a standard current source is proposed.Our goals were real-time tracking and location of stationary or moving underwater equipm...A new real-time underwater equipment location method adopting an electric field induced by a standard current source is proposed.Our goals were real-time tracking and location of stationary or moving underwater equipment both in shallow and deep seas,under noisy conditions.The main features of this method are as follows:(1)a standard current source on the water surface,which can be towed by a vehicle,consisting of two electrodes,a signal generator,and a GPS unit;(2)measurement of the extremely low frequency(ELF)electric field emitted by the current source,made possible by electric field sensors on the underwater equipment;(3)position of the underwater equipment is estimated in real time based on a progressive update extended Kalman filter(PUEKF),which is carried out using the propagation model of an ELF electric field because the electric field at the position of the underwater equipment and the current source position are known.We verified the accuracy of our method and confirmed real-time location feasibility through numerical,physical scale,and real-time sea experiments.Through numerical experiments,we verified that our method works for underwater equipment location in real-world conditions,and the location error can be less than 0.2 m.Next,real-time location experiments for stationary underwater measuring equipment in water tank were conducted.The result shows that the location error can be less than 0.1 m.We also confirmed real-time location feasibility through the use of offshore experiment.We expect that our method will complement conventional underwater acoustic location methods for underwater equipment in acoustically noisy environments.展开更多
Given the existing integrated scheduling algorithms,all processes are ordered and scheduled overall,and these algorithms ignore the influence of the vertical and horizontal characteristics of the product process tree ...Given the existing integrated scheduling algorithms,all processes are ordered and scheduled overall,and these algorithms ignore the influence of the vertical and horizontal characteristics of the product process tree on the product scheduling effect.This paper presents an integrated scheduling algorithm for the same equipment process sequencing based on the Root-Subtree horizontal and vertical pre-scheduling to solve the above problem.Firstly,the tree decomposition method is used to extract the root node to split the process tree into several Root-Subtrees,and the Root-Subtree priority is set from large to small through the optimal completion time of vertical and horizontal pre-scheduling.All Root-Subtree processes on the same equipment are sorted into the stack according to the equipment process pre-start time,and the stack-top processes are combined with the schedulable process set to schedule and dispatch the stack.The start processing time of each process is determined according to the dynamic start processing time strategy of the equipment process,to complete the fusion operation of the Root-Subtree processes under the constraints of the vertical process tree and the horizontal equipment.Then,the root node is retrieved to form a substantial scheduling scheme,which realizes scheduling optimization by mining the vertical and horizontal characteristics of the process tree.Verification by examples shows that,compared with the traditional integrated scheduling algorithms that sort the scheduling processes as an overall,the integrated scheduling algorithmin this paper is better.The proposed algorithmenhances the process scheduling compactness,reduces the length of the idle time of the processing equipment,and optimizes the production scheduling target,which is of universal significance to solve the integrated scheduling problem.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51777067).
文摘In feeder automation transformation there are difficulties in equipment and location selection.To help with this,an optimal layout model of feeder automation equipment oriented to the type of fault detection and local action is pro-posed.It analyzes the coordination relationship of the three most common types of automation equipment,i.e.,fault indicator,over-current trip switch and non-voltage trip switch in the fault handling process,and the explicit expres-sions of power outage time caused by a fault on different layouts of the above three types of equipment are given.Given constraints of power supply reliability and the goal of minimizing the sum of equipment-related capital invest-ment and power interruption cost,a mixed-integer quadratic programming model for optimal layout is established,in which the functional failure probability of equipment is linearized using the 3δprinciple in statistics.Finally,the basic characteristics of the proposed model are illustrated by different scenarios on the IEEE RBTS-BUS6 system.It can not only take into account fault location and fault isolation to enhance user power consumption perception,but also can guide precise investment to improve the operational quality and efficiency of a power company.
基金supported by the Youth Foundation of the National Natural Science Foundation of China(Grant No.51509252)。
文摘A new real-time underwater equipment location method adopting an electric field induced by a standard current source is proposed.Our goals were real-time tracking and location of stationary or moving underwater equipment both in shallow and deep seas,under noisy conditions.The main features of this method are as follows:(1)a standard current source on the water surface,which can be towed by a vehicle,consisting of two electrodes,a signal generator,and a GPS unit;(2)measurement of the extremely low frequency(ELF)electric field emitted by the current source,made possible by electric field sensors on the underwater equipment;(3)position of the underwater equipment is estimated in real time based on a progressive update extended Kalman filter(PUEKF),which is carried out using the propagation model of an ELF electric field because the electric field at the position of the underwater equipment and the current source position are known.We verified the accuracy of our method and confirmed real-time location feasibility through numerical,physical scale,and real-time sea experiments.Through numerical experiments,we verified that our method works for underwater equipment location in real-world conditions,and the location error can be less than 0.2 m.Next,real-time location experiments for stationary underwater measuring equipment in water tank were conducted.The result shows that the location error can be less than 0.1 m.We also confirmed real-time location feasibility through the use of offshore experiment.We expect that our method will complement conventional underwater acoustic location methods for underwater equipment in acoustically noisy environments.
基金supported by the National Natural Science Foundation of China[Grant No.61772160].
文摘Given the existing integrated scheduling algorithms,all processes are ordered and scheduled overall,and these algorithms ignore the influence of the vertical and horizontal characteristics of the product process tree on the product scheduling effect.This paper presents an integrated scheduling algorithm for the same equipment process sequencing based on the Root-Subtree horizontal and vertical pre-scheduling to solve the above problem.Firstly,the tree decomposition method is used to extract the root node to split the process tree into several Root-Subtrees,and the Root-Subtree priority is set from large to small through the optimal completion time of vertical and horizontal pre-scheduling.All Root-Subtree processes on the same equipment are sorted into the stack according to the equipment process pre-start time,and the stack-top processes are combined with the schedulable process set to schedule and dispatch the stack.The start processing time of each process is determined according to the dynamic start processing time strategy of the equipment process,to complete the fusion operation of the Root-Subtree processes under the constraints of the vertical process tree and the horizontal equipment.Then,the root node is retrieved to form a substantial scheduling scheme,which realizes scheduling optimization by mining the vertical and horizontal characteristics of the process tree.Verification by examples shows that,compared with the traditional integrated scheduling algorithms that sort the scheduling processes as an overall,the integrated scheduling algorithmin this paper is better.The proposed algorithmenhances the process scheduling compactness,reduces the length of the idle time of the processing equipment,and optimizes the production scheduling target,which is of universal significance to solve the integrated scheduling problem.