For the purpose of computer calculation to evaluate time-dependent quantum properties in finite temperature, we propose new numerical method expressed in the forms of simultaneous differential equations. At first we d...For the purpose of computer calculation to evaluate time-dependent quantum properties in finite temperature, we propose new numerical method expressed in the forms of simultaneous differential equations. At first we derive the equation of motion in finite temperature, which is found to be same expression as Heisenberg equation of motion except for the c-number. Based on this equation, we construct numerical method to estimate time-dependent physical properties in finite temperature precisely without using analytical procedures such as Keldysh formalism. Since our approach is so simple and is based on the simultaneous differential equations including no terms related to self-energies, computer programming can be easily performed. It is possible to estimate exact time-dependent physical properties, providing that Hamiltonian of the system is taken to be a one-electron picture. Furthermore, we refer to the application to the many body problem and it is numerically possible to calculate physical properties using Hartree Fock approximation. Our numerical method can be applied to the case even when perturbative Hamiltonians are newly introduced or Hamiltonian shows complex time-dependent behavior. In this article, at first, we derive the equation of motion in finite temperature. Secondly, for the purpose of verification and of exhibiting the usefulness, we show the derivation of gap equation of superconductivity and of sum rule of electrical conductivity and the application to the many body problem. Finally we apply this method to these two cases: the first case is most simplified resonance charge transfer neutralization of an ion and the second is the same process but impurity potential is newly introduced as perturbative Hamiltonian. Through both cases, it is found that neutralization process is not so sensitive to temperature, however, impurity potential as small as 10 meV strongly influences the neutralization of ion.展开更多
文摘For the purpose of computer calculation to evaluate time-dependent quantum properties in finite temperature, we propose new numerical method expressed in the forms of simultaneous differential equations. At first we derive the equation of motion in finite temperature, which is found to be same expression as Heisenberg equation of motion except for the c-number. Based on this equation, we construct numerical method to estimate time-dependent physical properties in finite temperature precisely without using analytical procedures such as Keldysh formalism. Since our approach is so simple and is based on the simultaneous differential equations including no terms related to self-energies, computer programming can be easily performed. It is possible to estimate exact time-dependent physical properties, providing that Hamiltonian of the system is taken to be a one-electron picture. Furthermore, we refer to the application to the many body problem and it is numerically possible to calculate physical properties using Hartree Fock approximation. Our numerical method can be applied to the case even when perturbative Hamiltonians are newly introduced or Hamiltonian shows complex time-dependent behavior. In this article, at first, we derive the equation of motion in finite temperature. Secondly, for the purpose of verification and of exhibiting the usefulness, we show the derivation of gap equation of superconductivity and of sum rule of electrical conductivity and the application to the many body problem. Finally we apply this method to these two cases: the first case is most simplified resonance charge transfer neutralization of an ion and the second is the same process but impurity potential is newly introduced as perturbative Hamiltonian. Through both cases, it is found that neutralization process is not so sensitive to temperature, however, impurity potential as small as 10 meV strongly influences the neutralization of ion.