提出了一种基于循环神经网络的空载电动出租车的充电桩推荐方法(CPRM-IET,charging pile recommendation method for idle electric taxis),来为空载状态下的电动出租车推荐最佳充电桩。空载状态下的电动出租车移动一般依赖于驾驶人的...提出了一种基于循环神经网络的空载电动出租车的充电桩推荐方法(CPRM-IET,charging pile recommendation method for idle electric taxis),来为空载状态下的电动出租车推荐最佳充电桩。空载状态下的电动出租车移动一般依赖于驾驶人的潜意识移动倾向和驾驶习惯,因此需要根据其历史移动轨迹来预测其未来移动,从而找到充电额外移动最小的若干充电桩。在CPRM-IET中,使用了一种基于双阶段注意力机制的循环神经网络(DA-RNN,dual-stage attention-based recurrent neural network)模型来预测电动出租车的未来轨迹,DA-RNN模型包括输入注意力机制和时间注意力机制。输入注意力机制在每个时刻为输入的行驶记录分配权重,而时间注意机制为编码器的隐藏状态分配权重。根据预测轨迹,再选择额外移动最小的若干充电桩,并推荐给电动出租车驾驶人。仿真结果表明,CPRM-IET可以在额外移动和均方根误差方面取得较好的结果,反映了CPRM-IET可以准确地预测空载电动出租车的未来轨迹,并向这些电动出租车推荐合适的充电桩。展开更多
为了改善基于卷积编解码架构的单通道语音增强网络对语音声学特征提取不充分、解码特征丢失严重的问题,提出一种基于多路信息聚合协同解码的单通道语音增强网络MIACD,通过双路编码器充分提取融入了语音自监督学习(SSL)表征的幅度谱和复...为了改善基于卷积编解码架构的单通道语音增强网络对语音声学特征提取不充分、解码特征丢失严重的问题,提出一种基于多路信息聚合协同解码的单通道语音增强网络MIACD,通过双路编码器充分提取融入了语音自监督学习(SSL)表征的幅度谱和复数谱特征,由4层Conformer分别从时间和频率维度对提取特征建模,采用残差连接将双路编码器提取的语音幅度、复数特征引入三路信息聚合解码器,并利用所提通道-时频注意力(CTF-Attention)机制根据语音能量分布情况调节解码器中聚合信息,有效缓解解码时可用声学信息缺失严重的问题。在公开数据集Voice Bank DEMAND上的实验结果表明,与用于单通道语音增强的协作学习框架(GaGNet)相比,MIACD在客观评价指标宽带感知评估语音质量(WB-PESQ)上提升了5.1%,短时客观可懂度(STOI)达到96.7%,验证所提方法可充分利用语音信息重构信号,有效抑制噪声并提升语音可理解性。展开更多
文摘为了改善基于卷积编解码架构的单通道语音增强网络对语音声学特征提取不充分、解码特征丢失严重的问题,提出一种基于多路信息聚合协同解码的单通道语音增强网络MIACD,通过双路编码器充分提取融入了语音自监督学习(SSL)表征的幅度谱和复数谱特征,由4层Conformer分别从时间和频率维度对提取特征建模,采用残差连接将双路编码器提取的语音幅度、复数特征引入三路信息聚合解码器,并利用所提通道-时频注意力(CTF-Attention)机制根据语音能量分布情况调节解码器中聚合信息,有效缓解解码时可用声学信息缺失严重的问题。在公开数据集Voice Bank DEMAND上的实验结果表明,与用于单通道语音增强的协作学习框架(GaGNet)相比,MIACD在客观评价指标宽带感知评估语音质量(WB-PESQ)上提升了5.1%,短时客观可懂度(STOI)达到96.7%,验证所提方法可充分利用语音信息重构信号,有效抑制噪声并提升语音可理解性。