In relativistic mechanics the time-like vector characterize the motion in spacetime with speed faster than the speed of light in vacuum c in which the line element ds2=c2dt2-dx2-dx2-dz2 is less than zero (where is inf...In relativistic mechanics the time-like vector characterize the motion in spacetime with speed faster than the speed of light in vacuum c in which the line element ds2=c2dt2-dx2-dx2-dz2 is less than zero (where is infinitesimal change in time, and are infinitesimal change in space), thus the time in relativistic mechanics can instantaneously flow [1], however in quantum mechanics although the time is treated as unobservable parameter (without any Hermitian observable operator have engine-value equivalent to time) any two physical quantity described by two non-commuting observable operatorsand fulfill , the knowledge of one immediately produce the knowledge of the other [2], thus in quantum mechanics if two particles interacted in finite temporal epoch and then separated in space the gaining of knowledge by the local measurement of physical quantity runs on one them (for example the measurement of spin direction of one particle using Stern-Gerlach experiment) immediately produce the knowledge of the complementary physical quantity of the other particle (for example the opposite spin direction of the other particle), this simply called quantum entanglement the concept that so much advanced after publication of the Jon Bell’s 1964 celebrated paper [3] in which he illustrated that we can add parameters to quantum mechanics to determine the results of individual measurements, without changing the statistical predictions, and then he conclude “there must be a mechanism whereby the setting of one measuring device can influence the reading of another instrument, however remote. Moreover, the signal involved must propagate instantaneously so that such a theory could not be Lorentz invariant”. The question now what these signals that can propagate instantaneously? The answer in this paper will be the time signals field which is defined for each constituent matter particle M and at each space point P as the measure of the total length of all occupation and leaving epochs of P by M which is representing a sequence func展开更多
Quantum theory according to the Copenhagen interpretation holds that, when a quantum interaction is observed (i.e., “measured”), the observer’s measuring devices temporarily become a part of the quantum system. Rel...Quantum theory according to the Copenhagen interpretation holds that, when a quantum interaction is observed (i.e., “measured”), the observer’s measuring devices temporarily become a part of the quantum system. Relativity theory holds that the event clock of the absorbed or emitted photon or graviton is frozen in time relative to all clocks outside the observed system. If we harmonize both theories, this would appear to imply that time continuity must be interrupted at each instant of observed photon or graviton interaction with matter. It is as if a segment of space-time is clipped out during each such observed interaction. If so, we must dispense with the notion of an absolutely smooth and continuous space-time and replace it with an observation-dependent, discontinuous, relativistic/quantum space-time. Mathematical physicists should be able to model this hypothesis (call it a “time-jump hypothesis”) and its inherent discontinuous space-time in their further efforts at unification.展开更多
文摘In relativistic mechanics the time-like vector characterize the motion in spacetime with speed faster than the speed of light in vacuum c in which the line element ds2=c2dt2-dx2-dx2-dz2 is less than zero (where is infinitesimal change in time, and are infinitesimal change in space), thus the time in relativistic mechanics can instantaneously flow [1], however in quantum mechanics although the time is treated as unobservable parameter (without any Hermitian observable operator have engine-value equivalent to time) any two physical quantity described by two non-commuting observable operatorsand fulfill , the knowledge of one immediately produce the knowledge of the other [2], thus in quantum mechanics if two particles interacted in finite temporal epoch and then separated in space the gaining of knowledge by the local measurement of physical quantity runs on one them (for example the measurement of spin direction of one particle using Stern-Gerlach experiment) immediately produce the knowledge of the complementary physical quantity of the other particle (for example the opposite spin direction of the other particle), this simply called quantum entanglement the concept that so much advanced after publication of the Jon Bell’s 1964 celebrated paper [3] in which he illustrated that we can add parameters to quantum mechanics to determine the results of individual measurements, without changing the statistical predictions, and then he conclude “there must be a mechanism whereby the setting of one measuring device can influence the reading of another instrument, however remote. Moreover, the signal involved must propagate instantaneously so that such a theory could not be Lorentz invariant”. The question now what these signals that can propagate instantaneously? The answer in this paper will be the time signals field which is defined for each constituent matter particle M and at each space point P as the measure of the total length of all occupation and leaving epochs of P by M which is representing a sequence func
文摘Quantum theory according to the Copenhagen interpretation holds that, when a quantum interaction is observed (i.e., “measured”), the observer’s measuring devices temporarily become a part of the quantum system. Relativity theory holds that the event clock of the absorbed or emitted photon or graviton is frozen in time relative to all clocks outside the observed system. If we harmonize both theories, this would appear to imply that time continuity must be interrupted at each instant of observed photon or graviton interaction with matter. It is as if a segment of space-time is clipped out during each such observed interaction. If so, we must dispense with the notion of an absolutely smooth and continuous space-time and replace it with an observation-dependent, discontinuous, relativistic/quantum space-time. Mathematical physicists should be able to model this hypothesis (call it a “time-jump hypothesis”) and its inherent discontinuous space-time in their further efforts at unification.