The carbonate-hosted Pb–Zn deposits in the Sanjiang metallogenic belt on the Tibetan Plateau are typical of MVT Pb–Zn deposits that form in thrust-fold belts. The Jiamoshan Pb–Zn deposit is located in the Changdu a...The carbonate-hosted Pb–Zn deposits in the Sanjiang metallogenic belt on the Tibetan Plateau are typical of MVT Pb–Zn deposits that form in thrust-fold belts. The Jiamoshan Pb–Zn deposit is located in the Changdu area in the middle part of the Sanjiang belt, and it represents a new style of MVT deposit that was controlled by karst structures in a thrust–fold system. Such a karst-controlled MVT Pb–Zn deposit in thrust settings has not previously been described in detail, and we therefore mapped the geology of the deposit and undertook a detailed study of its genesis. The karst structures that host the Jiamoshan deposit were formed in Triassic limestones along secondary reverse faults, and the orebodies have irregular tubular shapes. The main sulfide minerals are galena, sphalerite, and pyrite that occur in massive and lamellar form. The ore-forming fluids belonged to a Mg2+–Na+–K+–SO2-4–Cl-–F-–NO-3–H2 O system at low temperatures(120–130°C) but with high salinities(19–22% NaCl eq.). We have recognized basinal brine as the source of the ore-forming fluids on the basis of their H–O isotopic compositions(-145‰ to-93‰ for δDV-SMOW and-2.22‰ to 13.00‰ for δ18 Ofluid), the ratios of Cl/Br(14–1196) and Na/Br(16–586) in the hydrothermal fluids, and the C–O isotopic compositions of calcite(-5.0‰ to 3.7‰ for δ13 CV-PDB and 15.1‰ to 22.3‰ for δ18 OV-SMOW). These fluids may have been derived from evaporated seawater trapped in marine strata at depth or from Paleogene–Neogene basins on the surface. The δ34 S values are low in the galena(-3.2‰ to 0.6‰) but high in the barite(27.1‰), indicating that the reduced sulfur came from gypsum in the regional Cenozoic basins and from sulfates in trapped paleo-seawater by bacterial sulfate reduction. The Pb isotopic compositions of the galena samples(18.3270–18.3482 for 206 Pb/204 Pb, 15.6345–15.6390 for 207 Pb/204 Pb, and 38.5503–38.5582 for 208 Pb/204 Pb) are similar to those of the regional Triassic volcanic-arc ro展开更多
Understanding the influence of the Late Miocene-Quaternary opening of the Tyrrhenian Basin on the evolution of the external sectors of the Africa paleo-margin in Sicily, actually, represents a hard challenge, even tho...Understanding the influence of the Late Miocene-Quaternary opening of the Tyrrhenian Basin on the evolution of the external sectors of the Africa paleo-margin in Sicily, actually, represents a hard challenge, even though several, and contrasting, models have been proposed in the last decades. One open problem refers to localizing the main regional scale tectonic lineaments of Sicily that accommodated the hundreds of kilometers of lateral displacement, due to the Tyrrhenian Basin opening. In the present work, we present the results rising from a detailed field mapping carried out in relevant vast areas of central Sicily. These data enabled to reconstruct a Neogene-Quarternary kinematic evolutionary model of the collision belt of Sicily. We analyzed the northern tectonic margin of the Caltanissetta Through, which represents a structural depression hosting a thick allochthonous tectonic wedge, on which lay different unconformable thrust-top basin deposits. In more details, our study aims to reconstruct the tectono-sedimentary Late Tortonian-to-Quaternary evolution of this tectonic wedge, revealing that regional E-W-trending dextral shear zones deform and cut the NE-oriented, SE-verging, thrust-and-fold belt. The strike-slip tectonics thus controlled the deposition of different sedimentary cycles on the thrust-top basins and governed the tectonic inversion of the external sectors of the Africa paleo-margin.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2016YFC0600306)the National Natural Science Foundation of China(Grant Nos 41773042,41922022,41773043,41772088,91962105 and 41702082)+1 种基金the independent research project from Key Laboratory of DeepEarth Dynamics of the Ministry of Natural Resources(Grant No.J1901-6)the IGCP-662 program。
文摘The carbonate-hosted Pb–Zn deposits in the Sanjiang metallogenic belt on the Tibetan Plateau are typical of MVT Pb–Zn deposits that form in thrust-fold belts. The Jiamoshan Pb–Zn deposit is located in the Changdu area in the middle part of the Sanjiang belt, and it represents a new style of MVT deposit that was controlled by karst structures in a thrust–fold system. Such a karst-controlled MVT Pb–Zn deposit in thrust settings has not previously been described in detail, and we therefore mapped the geology of the deposit and undertook a detailed study of its genesis. The karst structures that host the Jiamoshan deposit were formed in Triassic limestones along secondary reverse faults, and the orebodies have irregular tubular shapes. The main sulfide minerals are galena, sphalerite, and pyrite that occur in massive and lamellar form. The ore-forming fluids belonged to a Mg2+–Na+–K+–SO2-4–Cl-–F-–NO-3–H2 O system at low temperatures(120–130°C) but with high salinities(19–22% NaCl eq.). We have recognized basinal brine as the source of the ore-forming fluids on the basis of their H–O isotopic compositions(-145‰ to-93‰ for δDV-SMOW and-2.22‰ to 13.00‰ for δ18 Ofluid), the ratios of Cl/Br(14–1196) and Na/Br(16–586) in the hydrothermal fluids, and the C–O isotopic compositions of calcite(-5.0‰ to 3.7‰ for δ13 CV-PDB and 15.1‰ to 22.3‰ for δ18 OV-SMOW). These fluids may have been derived from evaporated seawater trapped in marine strata at depth or from Paleogene–Neogene basins on the surface. The δ34 S values are low in the galena(-3.2‰ to 0.6‰) but high in the barite(27.1‰), indicating that the reduced sulfur came from gypsum in the regional Cenozoic basins and from sulfates in trapped paleo-seawater by bacterial sulfate reduction. The Pb isotopic compositions of the galena samples(18.3270–18.3482 for 206 Pb/204 Pb, 15.6345–15.6390 for 207 Pb/204 Pb, and 38.5503–38.5582 for 208 Pb/204 Pb) are similar to those of the regional Triassic volcanic-arc ro
文摘Understanding the influence of the Late Miocene-Quaternary opening of the Tyrrhenian Basin on the evolution of the external sectors of the Africa paleo-margin in Sicily, actually, represents a hard challenge, even though several, and contrasting, models have been proposed in the last decades. One open problem refers to localizing the main regional scale tectonic lineaments of Sicily that accommodated the hundreds of kilometers of lateral displacement, due to the Tyrrhenian Basin opening. In the present work, we present the results rising from a detailed field mapping carried out in relevant vast areas of central Sicily. These data enabled to reconstruct a Neogene-Quarternary kinematic evolutionary model of the collision belt of Sicily. We analyzed the northern tectonic margin of the Caltanissetta Through, which represents a structural depression hosting a thick allochthonous tectonic wedge, on which lay different unconformable thrust-top basin deposits. In more details, our study aims to reconstruct the tectono-sedimentary Late Tortonian-to-Quaternary evolution of this tectonic wedge, revealing that regional E-W-trending dextral shear zones deform and cut the NE-oriented, SE-verging, thrust-and-fold belt. The strike-slip tectonics thus controlled the deposition of different sedimentary cycles on the thrust-top basins and governed the tectonic inversion of the external sectors of the Africa paleo-margin.