In this paper, we study the threshold result for the initial boundary value problem of non-homogeneous semilinear parabolic equations {μt-△μ=g(μ)+λf(x),(x,t)∈Ω×(0,T),μ=0,(x,t)∈ Ω×[0,T)...In this paper, we study the threshold result for the initial boundary value problem of non-homogeneous semilinear parabolic equations {μt-△μ=g(μ)+λf(x),(x,t)∈Ω×(0,T),μ=0,(x,t)∈ Ω×[0,T),μ(x,0)=μ0(x)≥0,x∈Ω.By combining a priori estimate of global solution with property of stationary solution set of problem (P), we prove that the minimal stationary solution Uλ(x) of problem (P) is stable, whereas, any other stationary solution is an initial datum threshold for the existence and nonexistence of global solution to problem (P).展开更多
基金supported by Natural Science Foundation of China(10971061)Hunan Provincial Innovation Foundation For Postgraduate(CX2010B209)
文摘In this paper, we study the threshold result for the initial boundary value problem of non-homogeneous semilinear parabolic equations {μt-△μ=g(μ)+λf(x),(x,t)∈Ω×(0,T),μ=0,(x,t)∈ Ω×[0,T),μ(x,0)=μ0(x)≥0,x∈Ω.By combining a priori estimate of global solution with property of stationary solution set of problem (P), we prove that the minimal stationary solution Uλ(x) of problem (P) is stable, whereas, any other stationary solution is an initial datum threshold for the existence and nonexistence of global solution to problem (P).