Based on the former research, the mechanism of the influence of the medium structure on the sound velocity of the three-phase seabed deposit is discussed by theoretical method. Through analysis of several structure mo...Based on the former research, the mechanism of the influence of the medium structure on the sound velocity of the three-phase seabed deposit is discussed by theoretical method. Through analysis of several structure models of three-phase seabed deposit, an equation of sound velocity is presented, which can describe the effect of structure of three-phase deposit on its acoustic velocity. Seen form the derived equation, the equations of the sound velocity of the deposits with different medium structures are different, the influence of the medium structure on the sound velocity is apparent. The equation in the paper provides the theoretical basis to understand the mechanics properties through sound velocity test, and it can be easily adopted in engineering. The influences of the parameters of deposits, void ratio, gas concentration and modulus on sound velocity through the deposit are investigated by numerical analysis of the acoustic velocity. Numerical result shows that the sound velocity of three-phase medium is affected by void ratio, gas concentration and body modulus, and the sound velocity generally increases with the gas concentration increasing. The results of the paper can be helpful to the acoustic method.展开更多
文摘Based on the former research, the mechanism of the influence of the medium structure on the sound velocity of the three-phase seabed deposit is discussed by theoretical method. Through analysis of several structure models of three-phase seabed deposit, an equation of sound velocity is presented, which can describe the effect of structure of three-phase deposit on its acoustic velocity. Seen form the derived equation, the equations of the sound velocity of the deposits with different medium structures are different, the influence of the medium structure on the sound velocity is apparent. The equation in the paper provides the theoretical basis to understand the mechanics properties through sound velocity test, and it can be easily adopted in engineering. The influences of the parameters of deposits, void ratio, gas concentration and modulus on sound velocity through the deposit are investigated by numerical analysis of the acoustic velocity. Numerical result shows that the sound velocity of three-phase medium is affected by void ratio, gas concentration and body modulus, and the sound velocity generally increases with the gas concentration increasing. The results of the paper can be helpful to the acoustic method.