A rigid colloidal silica template was formed by self-assembly of the monodispersed silica spheres prepared according to Stober method. The silica template is highly ordered, which was verified by bright color effect d...A rigid colloidal silica template was formed by self-assembly of the monodispersed silica spheres prepared according to Stober method. The silica template is highly ordered, which was verified by bright color effect due to Bragg diffraction and the results of SEM. The free radical polymerization of styrene was allowed within the interstices of the rigid template to result in the formation of the three-dimensional periodic silica/polystyrene nano-composites. The titled porous polystyrene was prepared by chemical decomposition of the template with concentrated aqueous hydrofluoric acid. Scanning electron microscopy characterization showed that the macroporous polystyrene has ordered arrays of the uniform pores replicated from the template. Moreover, it was found that the morphology of the as-synthesized macroporous polystyrene was greatly affected by the connectivity of the silica spheres treated under different conditions.展开更多
The traditional guidance law only guarantees the accuracy of attacking a target. However, the look angle and acceleration constraints are indispensable in applications. A new adaptive three-dimensional proportional na...The traditional guidance law only guarantees the accuracy of attacking a target. However, the look angle and acceleration constraints are indispensable in applications. A new adaptive three-dimensional proportional navigation(PN) guidance law is proposed based on convex optimization. Decomposition of the three-dimensional space is carried out to establish threedimensional kinematic engagements. The constraints and the performance index are disposed by using the convex optimization method. PN guidance gains can be obtained by solving the optimization problem. This solution is more rapid and programmatic than the traditional method and provides a foundation for future online guidance methods, which is of great value for engineering applications.展开更多
Three-dimensional (3D) ordered macroporous indium tin oxide (ITO) is pre- pared using a polymer colloidal crystal template that is formed by self-assembly of the monodisperse poly(methyl methacrylate) (PMMA) microsphe...Three-dimensional (3D) ordered macroporous indium tin oxide (ITO) is pre- pared using a polymer colloidal crystal template that is formed by self-assembly of the monodisperse poly(methyl methacrylate) (PMMA) microspheres. The morphologies and BET surface area of the macroporous material is examined by scanning electron micro- scope, transmission electron microscopy and N2 adsorption/desorption. Results indicate that the macroporous material has highly ordered arrays of the uniform pores replicated from the PMMA colloidal crystal template when the polymer colloidal crystal template is removed by calcinations at 500℃. The pore diameter (about 450 nm) of macroporous ITO slightly shrank to the PMMA microspheres. The BET surface area and pore volume of the macroporous material are 389 m2·g-1 and 0.36 cm3·g-1, respectively. Moreover, the macroporous ITO, containing 5 mol% Sn and after annealing under vacuum, shows the minimum resistivity of ρ = 8.2×10-3 Ω· cm. The conductive mechanism of macroporous ITO is discussed, and it is believed that the oxygen vacancies are the major factor for excellent electrical properties.展开更多
Simulated photo-degradation of fluorescent dissolved organic matter(FDOM) in Lake Baihua(BH) and Lake Hongfeng(HF) was investigated with three-dimensional excitationemission matrix(3 DEEM) fluorescence combined with t...Simulated photo-degradation of fluorescent dissolved organic matter(FDOM) in Lake Baihua(BH) and Lake Hongfeng(HF) was investigated with three-dimensional excitationemission matrix(3 DEEM) fluorescence combined with the fluorescence regional integration(FRI),parallel factor(PARAFAC) analysis,and multi-order kinetic models.In the FRI analysis,fulvic-like and humic-like materials were the main constituents for both BH-FDOM and HF-FDOM.Four individual components were identified by use of PARAFAC analysis as humic-like components(C1),fulvic-like components(C2),protein-like components(C3) and unidentified components(C4).The maximum 3 DEEM fluorescence intensity of PARAFAC components C1-C3 decreased by about 60%,70% and 90%,respectively after photo-degradation.The multi-order kinetic model was acceptable to represent the photo-degradation of FDOM with correlation coefficient(Radj2)(0.963-0.998).The photo-degradation rate constants(kn) showed differences of three orders of magnitude,from 1.09 × 10-6 to 4.02 × 10-4 min-1,and half-life of multi-order model(T1/2n)ranged from 5.26 to 64.01 min.The decreased values of fluorescence index(FI) and biogenic index(BI),the fact that of percent fluorescence response parameter of Region I(PⅠ,n) showed the greatest change ratio,followed by percent fluorescence response parameter of Region II(PⅡ,n,while the largest decrease ratio was found for C3 components,and the lowest T1/2n was observed for C3,indicated preferential degradation of protein-like materials/components derived from biological sources during photodegradation.This research on the degradation of FDOM by 3 DEEM/FRI-PARAFAC would be beneficial to understanding the photo-degradation of FD OM in natural environments and accurately predicting the environmental behaviors of contaminants in the presence of FDOM.展开更多
In order to solve the problem that the testing cost of the three-dimensional integrated circuit(3D IC)is too high,an optimal stacking order scheme is proposed to reduce the mid-bond test cost.A new testing model is bu...In order to solve the problem that the testing cost of the three-dimensional integrated circuit(3D IC)is too high,an optimal stacking order scheme is proposed to reduce the mid-bond test cost.A new testing model is built with the general consideration of both the test time for automatic test equipment(ATE)and manufacturing failure factors.An algorithm for testing cost and testing order optimization is proposed,and the minimum testing cost and optimized stacking order can be carried out by taking testing bandwidth and testing power as constraints.To prove the influence of the optimal stacking order on testing costs,two baselines stacked in sequential either in pyramid type or in inverted pyramid type are compared.Based on the benchmarks from ITC 02,experimental results show that for a 5-layer 3D IC,under different constraints,the optimal stacking order can reduce the test costs on average by 13%and 62%,respectively,compared to the pyramid type and inverted pyramid type.Furthermore,with the increase of the stack size,the test costs of the optimized stack order can be decreased.展开更多
基金by the National Natural Science Foundation of China (Grant No. 29774038), and the National Key Project for Fundamental Research, "Macromolecular Condensed State" of the Ministry of Science and Technology of China. The support by the Polymer Physics Labor
文摘A rigid colloidal silica template was formed by self-assembly of the monodispersed silica spheres prepared according to Stober method. The silica template is highly ordered, which was verified by bright color effect due to Bragg diffraction and the results of SEM. The free radical polymerization of styrene was allowed within the interstices of the rigid template to result in the formation of the three-dimensional periodic silica/polystyrene nano-composites. The titled porous polystyrene was prepared by chemical decomposition of the template with concentrated aqueous hydrofluoric acid. Scanning electron microscopy characterization showed that the macroporous polystyrene has ordered arrays of the uniform pores replicated from the template. Moreover, it was found that the morphology of the as-synthesized macroporous polystyrene was greatly affected by the connectivity of the silica spheres treated under different conditions.
基金supported by the National Natural Science Foundation of China(61803357)。
文摘The traditional guidance law only guarantees the accuracy of attacking a target. However, the look angle and acceleration constraints are indispensable in applications. A new adaptive three-dimensional proportional navigation(PN) guidance law is proposed based on convex optimization. Decomposition of the three-dimensional space is carried out to establish threedimensional kinematic engagements. The constraints and the performance index are disposed by using the convex optimization method. PN guidance gains can be obtained by solving the optimization problem. This solution is more rapid and programmatic than the traditional method and provides a foundation for future online guidance methods, which is of great value for engineering applications.
文摘Three-dimensional (3D) ordered macroporous indium tin oxide (ITO) is pre- pared using a polymer colloidal crystal template that is formed by self-assembly of the monodisperse poly(methyl methacrylate) (PMMA) microspheres. The morphologies and BET surface area of the macroporous material is examined by scanning electron micro- scope, transmission electron microscopy and N2 adsorption/desorption. Results indicate that the macroporous material has highly ordered arrays of the uniform pores replicated from the PMMA colloidal crystal template when the polymer colloidal crystal template is removed by calcinations at 500℃. The pore diameter (about 450 nm) of macroporous ITO slightly shrank to the PMMA microspheres. The BET surface area and pore volume of the macroporous material are 389 m2·g-1 and 0.36 cm3·g-1, respectively. Moreover, the macroporous ITO, containing 5 mol% Sn and after annealing under vacuum, shows the minimum resistivity of ρ = 8.2×10-3 Ω· cm. The conductive mechanism of macroporous ITO is discussed, and it is believed that the oxygen vacancies are the major factor for excellent electrical properties.
基金financially supported by the National Natural Science Foundation of China(No.41573130)BNU Interdisciplinary Research Foundation for First-Year Doctoral Candidates(No.BNUXKJC1802)
文摘Simulated photo-degradation of fluorescent dissolved organic matter(FDOM) in Lake Baihua(BH) and Lake Hongfeng(HF) was investigated with three-dimensional excitationemission matrix(3 DEEM) fluorescence combined with the fluorescence regional integration(FRI),parallel factor(PARAFAC) analysis,and multi-order kinetic models.In the FRI analysis,fulvic-like and humic-like materials were the main constituents for both BH-FDOM and HF-FDOM.Four individual components were identified by use of PARAFAC analysis as humic-like components(C1),fulvic-like components(C2),protein-like components(C3) and unidentified components(C4).The maximum 3 DEEM fluorescence intensity of PARAFAC components C1-C3 decreased by about 60%,70% and 90%,respectively after photo-degradation.The multi-order kinetic model was acceptable to represent the photo-degradation of FDOM with correlation coefficient(Radj2)(0.963-0.998).The photo-degradation rate constants(kn) showed differences of three orders of magnitude,from 1.09 × 10-6 to 4.02 × 10-4 min-1,and half-life of multi-order model(T1/2n)ranged from 5.26 to 64.01 min.The decreased values of fluorescence index(FI) and biogenic index(BI),the fact that of percent fluorescence response parameter of Region I(PⅠ,n) showed the greatest change ratio,followed by percent fluorescence response parameter of Region II(PⅡ,n,while the largest decrease ratio was found for C3 components,and the lowest T1/2n was observed for C3,indicated preferential degradation of protein-like materials/components derived from biological sources during photodegradation.This research on the degradation of FDOM by 3 DEEM/FRI-PARAFAC would be beneficial to understanding the photo-degradation of FD OM in natural environments and accurately predicting the environmental behaviors of contaminants in the presence of FDOM.
基金The National Natural Science Foundation of China(No.61674048,61574052,61474036,61371025)the Project of Anhui Institute of Economics and Management(No.YJKT1417T01)
文摘In order to solve the problem that the testing cost of the three-dimensional integrated circuit(3D IC)is too high,an optimal stacking order scheme is proposed to reduce the mid-bond test cost.A new testing model is built with the general consideration of both the test time for automatic test equipment(ATE)and manufacturing failure factors.An algorithm for testing cost and testing order optimization is proposed,and the minimum testing cost and optimized stacking order can be carried out by taking testing bandwidth and testing power as constraints.To prove the influence of the optimal stacking order on testing costs,two baselines stacked in sequential either in pyramid type or in inverted pyramid type are compared.Based on the benchmarks from ITC 02,experimental results show that for a 5-layer 3D IC,under different constraints,the optimal stacking order can reduce the test costs on average by 13%and 62%,respectively,compared to the pyramid type and inverted pyramid type.Furthermore,with the increase of the stack size,the test costs of the optimized stack order can be decreased.