Three-dimensional (3D) printing has recently emerged as a new technique in various liver-related surgical fields. There are currently only a few systematic reviews that summarize the evidence of its impact. In order t...Three-dimensional (3D) printing has recently emerged as a new technique in various liver-related surgical fields. There are currently only a few systematic reviews that summarize the evidence of its impact. In order to construct a systematic literature review of the applications and effects of 3D printing in liver surgery, we searched the PubMed, Embase and ScienceDirect databases for relevant titles, according to the PRISMA statement guidelines. We retrieved 162 titles, of which 32 met the inclusion criteria and are reported. The leading application of 3D printing in liver surgery is for preoperative planning. 3D printing techniques seem to be beneficial for preoperative planning and educational tools, despite their cost and time requirements, but this conclusion must be confirmed by additional randomized controlled trials.展开更多
High-steep slope stability and its optimal excavation design in Shuichang open pit iron mine were analyzed based on a large 3D physical simulation technique. An optimal excavation scheme with a relatively steeper slop...High-steep slope stability and its optimal excavation design in Shuichang open pit iron mine were analyzed based on a large 3D physical simulation technique. An optimal excavation scheme with a relatively steeper slope angle was successfully implemented at the northwest wall between Nos. 4 and 5 exploration lines of Shuichang Iron Mine, taking into account the 3D scale effect. The phys-ico-mechanical properties of rock materials were obtained by laboratory tests conducted on sample cores from exploration drilling directly from the iron mine. A porous rock-like composite material was formed for the model, and the mechanical parameters of the material were assessed experimentally;specifically, the effect of water on the sample was quantitatively determined. We adopted an experimental setup using stiff modular applied static loading to carry out a visual excavation of the slope at a random depth. The setup was equipped with acous-tic emission (AE) sensors, and the experiments were monitored by crack optical acquirement, ground penetrating radar, and close-field pho-togrammetry to investigate the mechanisms of rock-mass destabilization in the high-steep slope. For the complex study area, the model re-sults indicated a clear correlation between the model's destabilization resulting from slope excavation and the collected monitoring informa-tion. During the model simulation, the overall angle of the slope increased by 1-6 degrees in different sections. Dramatically, the modeled excavation scheme saved over 80 million tons of rock from extraction, generating enormous economic and ecological benefits.展开更多
文摘Three-dimensional (3D) printing has recently emerged as a new technique in various liver-related surgical fields. There are currently only a few systematic reviews that summarize the evidence of its impact. In order to construct a systematic literature review of the applications and effects of 3D printing in liver surgery, we searched the PubMed, Embase and ScienceDirect databases for relevant titles, according to the PRISMA statement guidelines. We retrieved 162 titles, of which 32 met the inclusion criteria and are reported. The leading application of 3D printing in liver surgery is for preoperative planning. 3D printing techniques seem to be beneficial for preoperative planning and educational tools, despite their cost and time requirements, but this conclusion must be confirmed by additional randomized controlled trials.
基金the National Key Basic Research and Development Program of China(No.2015CB251600)the Preliminary National Key Basic Research and Development Program of China(No.2014CB260404)+1 种基金the National Key Natural Science Foundation of China(No.51034001,No.U13612030)the Shaanxi Innovation Team Program(No.2013KCT-16)
文摘High-steep slope stability and its optimal excavation design in Shuichang open pit iron mine were analyzed based on a large 3D physical simulation technique. An optimal excavation scheme with a relatively steeper slope angle was successfully implemented at the northwest wall between Nos. 4 and 5 exploration lines of Shuichang Iron Mine, taking into account the 3D scale effect. The phys-ico-mechanical properties of rock materials were obtained by laboratory tests conducted on sample cores from exploration drilling directly from the iron mine. A porous rock-like composite material was formed for the model, and the mechanical parameters of the material were assessed experimentally;specifically, the effect of water on the sample was quantitatively determined. We adopted an experimental setup using stiff modular applied static loading to carry out a visual excavation of the slope at a random depth. The setup was equipped with acous-tic emission (AE) sensors, and the experiments were monitored by crack optical acquirement, ground penetrating radar, and close-field pho-togrammetry to investigate the mechanisms of rock-mass destabilization in the high-steep slope. For the complex study area, the model re-sults indicated a clear correlation between the model's destabilization resulting from slope excavation and the collected monitoring informa-tion. During the model simulation, the overall angle of the slope increased by 1-6 degrees in different sections. Dramatically, the modeled excavation scheme saved over 80 million tons of rock from extraction, generating enormous economic and ecological benefits.