期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation 被引量:15
1
作者 Longcheng Zhang Jie Liang +11 位作者 Luchao Yue Kai Dong Jun Li Donglin Zhao Zerong Li Shengjun Sun Yongsong Luo Qian Liu Guanwei Cui Abdulmohsen Ali Alshehri Xiaodong Guo Xuping Sun 《Nano Research Energy》 2022年第3期35-43,共9页
Seawater electrolysis is an extremely attractive approach for harvesting clean hydrogen energy,but detrimental chlorine species(i.e.,chloride and hypochlorite)cause severe corrosion at the anode.Here,we report our rec... Seawater electrolysis is an extremely attractive approach for harvesting clean hydrogen energy,but detrimental chlorine species(i.e.,chloride and hypochlorite)cause severe corrosion at the anode.Here,we report our recent finding that benzoate anions-intercalated NiFe-layered double hydroxide nanosheet on carbon cloth(BZ-NiFe-LDH/CC)behaves as a highly efficient and durable monolithic catalyst for alkaline seawater oxidation,affords enlarged interlayer spacing of LDH,inhibits chlorine(electro)chemistry,and alleviates local pH drop of the electrode.It only needs an overpotential of 320 mV to reach a current density of 500 mA·cm^(−2)in 1 M KOH.In contrast to the fast activity decay of NiFe-LDH/CC counterpart during long-term electrolysis,BZ-NiFe-LDH/CC achieves stable 100-h electrolysis at an industrial-level current density of 500 mA·cm^(−2)in alkaline seawater.Operando Raman spectroscopy studies further identify structural changes of disorderedδ(NiIII-O)during the seawater oxidation process. 展开更多
关键词 seawater oxidation layered double hydroxide three-dimensional(3D)self-supported electrocatalysts ANTICORROSION operando Raman spectroscopy
原文传递
Advance in 3D self-supported amorphous nanomaterials for energy storage and conversion 被引量:3
2
作者 Baohong Zhang Yanhong Li +3 位作者 Haoze Bai Binbin Jia Di Liu Lidong Li 《Nano Research》 SCIE EI CSCD 2023年第7期10597-10616,共20页
The advancement of next-generation energy technologies calls for rationally designed and fabricated electrode materials that have desirable structures and satisfactory performance.Three-dimensional(3D)self-supported a... The advancement of next-generation energy technologies calls for rationally designed and fabricated electrode materials that have desirable structures and satisfactory performance.Three-dimensional(3D)self-supported amorphous nanomaterials have attracted great enthusiasm as the cornerstone for building high-performance nanodevices.In particular,tremendous efforts have been devoted to the design,fabrication,and evaluation of self-supported amorphous nanomaterials as electrodes for energy storage and conversion devices in the past decade.However,the electrochemical performance of devices assembled with 3D self-supported amorphous nanomaterials still remains to be dramatically promoted to satisfy the demands for more practical applications.In this review,we aim to outline the achievements made in recent years in the development of 3D self-supported amorphous nanomaterials for a broad range of energy storage and conversion processes.We firstly summarize different synthetic strategies employed to synthesize 3D nanomaterials and to tailor their composition,morphology,and structure.Then,the performance of these 3D self-supported amorphous nanomaterials in their corresponding energy-related reactions is highlighted.Finally,we draw out our comprehensive understanding towards both challenges and prospects of this promising field,where valuable guidance and inspiration will surely facilitate further development of 3D self-supported amorphous nanomaterials,thus enabling more highly efficient energy storage and conversion devices that play a key role in embracing a sustainable energy future. 展开更多
关键词 three-dimensional(3D)self-supported amorphous nanomaterials synthetic strategy energy storage energy conversion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部