In this paper,we study the existence of positive solutions for the nonlinear singular third-order three-point boundary value problemu (t) = λa(t)f(t,u(t)),u(0) = u (1) = u (η) = 0,where λ is a positiv...In this paper,we study the existence of positive solutions for the nonlinear singular third-order three-point boundary value problemu (t) = λa(t)f(t,u(t)),u(0) = u (1) = u (η) = 0,where λ is a positive parameter and 0 ≤ η 1 2 .By using the classical Krasnosel’skii’s fixed point theorem in cone,we obtain various new results on the existence of positive solution,and the solution is strictly increasing.Finally we give an example.展开更多
In this paper,we study a singular third-order three-point boundary value problem. By a fixed point theorem of cone expansion-compression type due to Krasnosel’skii,we obtain various new results on the existence of tw...In this paper,we study a singular third-order three-point boundary value problem. By a fixed point theorem of cone expansion-compression type due to Krasnosel’skii,we obtain various new results on the existence of two positive solutions to the problem,whose coefficient is allowed to have suitable singularities. Finally,we give an example to verify our results.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 10871160)
文摘In this paper,we study the existence of positive solutions for the nonlinear singular third-order three-point boundary value problemu (t) = λa(t)f(t,u(t)),u(0) = u (1) = u (η) = 0,where λ is a positive parameter and 0 ≤ η 1 2 .By using the classical Krasnosel’skii’s fixed point theorem in cone,we obtain various new results on the existence of positive solution,and the solution is strictly increasing.Finally we give an example.
基金the National Natural Science Foundation of China (10871160)
文摘In this paper,we study a singular third-order three-point boundary value problem. By a fixed point theorem of cone expansion-compression type due to Krasnosel’skii,we obtain various new results on the existence of two positive solutions to the problem,whose coefficient is allowed to have suitable singularities. Finally,we give an example to verify our results.