为研究单层弹性环式挤压油膜阻尼器(elastic ring squeeze film damper,ERSFD)的油膜压力特性,建立薄环-紊动射流小孔模型。通过平面薄环弯曲理论和普朗特边界层理论分别计算弹性环变形和阻尼孔出口净流速;分析弹性环柔度、阻尼孔直径...为研究单层弹性环式挤压油膜阻尼器(elastic ring squeeze film damper,ERSFD)的油膜压力特性,建立薄环-紊动射流小孔模型。通过平面薄环弯曲理论和普朗特边界层理论分别计算弹性环变形和阻尼孔出口净流速;分析弹性环柔度、阻尼孔直径及进动角变化对油膜压力特性的影响,并开展外腔油膜压力多转速测量试验。结果表明:外腔油膜压力随弹性环柔度的减小而下降,但随阻尼孔直径的减小而增加;对于内腔油膜压力,阻尼孔直径的影响与外腔相似,但减小弹性环柔度导致压力增加。试验表明,外腔油膜压力在不同转速下均同步方位角周期变化,而高转速时,压力幅值略有增加。展开更多
This paper explores an analytical model for Elastic Ring Squeeze Film Damper(ERSFD) with thin-walled ring and turbulent-jet orifices, and uncovers its Oil Film Pressure Performance(OFPP). Firstly, the ring deformation...This paper explores an analytical model for Elastic Ring Squeeze Film Damper(ERSFD) with thin-walled ring and turbulent-jet orifices, and uncovers its Oil Film Pressure Performance(OFPP). Firstly, the ring deformation is addressed by using the Fourier series expansion approach and the orifice outflow rate is characterized with the Prandtl boundary layer theory. Secondly, applying finite difference scheme, the influence of elastic ring flexibility, orifice diameter, and attitude angle on the OFPP is analyzed. Finally, Outer chamber pressure was measured experimentally at different rotor speeds. The results indicate that the outer chamber pressure coats an individual load-carrying region and spreads symmetrically pertaining to the attitude angle. Its amplitude drops as the elastic ring flexibility decreases but boosts with the reduction of the orifice diameter.For inner chamber pressure, the orifice diameter effects a similar trend to the outer cavity, but exhibits more stable distribution regarding the attitude angle. Minimizing the elastic ring flexibility causes an increase in amplitude. The model is validated by the test results giving that the outer chamber pressure shifts synchronously and periodically with the variation of the attitude angle,while the pressure amplitude increases slightly at higher rotor speeds.展开更多
文摘为研究单层弹性环式挤压油膜阻尼器(elastic ring squeeze film damper,ERSFD)的油膜压力特性,建立薄环-紊动射流小孔模型。通过平面薄环弯曲理论和普朗特边界层理论分别计算弹性环变形和阻尼孔出口净流速;分析弹性环柔度、阻尼孔直径及进动角变化对油膜压力特性的影响,并开展外腔油膜压力多转速测量试验。结果表明:外腔油膜压力随弹性环柔度的减小而下降,但随阻尼孔直径的减小而增加;对于内腔油膜压力,阻尼孔直径的影响与外腔相似,但减小弹性环柔度导致压力增加。试验表明,外腔油膜压力在不同转速下均同步方位角周期变化,而高转速时,压力幅值略有增加。
基金supported by the National Natural Science Foundation of China(No.52005158)。
文摘This paper explores an analytical model for Elastic Ring Squeeze Film Damper(ERSFD) with thin-walled ring and turbulent-jet orifices, and uncovers its Oil Film Pressure Performance(OFPP). Firstly, the ring deformation is addressed by using the Fourier series expansion approach and the orifice outflow rate is characterized with the Prandtl boundary layer theory. Secondly, applying finite difference scheme, the influence of elastic ring flexibility, orifice diameter, and attitude angle on the OFPP is analyzed. Finally, Outer chamber pressure was measured experimentally at different rotor speeds. The results indicate that the outer chamber pressure coats an individual load-carrying region and spreads symmetrically pertaining to the attitude angle. Its amplitude drops as the elastic ring flexibility decreases but boosts with the reduction of the orifice diameter.For inner chamber pressure, the orifice diameter effects a similar trend to the outer cavity, but exhibits more stable distribution regarding the attitude angle. Minimizing the elastic ring flexibility causes an increase in amplitude. The model is validated by the test results giving that the outer chamber pressure shifts synchronously and periodically with the variation of the attitude angle,while the pressure amplitude increases slightly at higher rotor speeds.