薄层研究不应过于强调单一地层的厚度,而应关注地层的组合形式。重新定义了薄层,并从地质学和地球物理学角度分别对薄层进行分类,初步建立了多维度薄层分类标准。基于新的分类标准,研究调谐效应,并根据调谐响应的不同特征,将调谐分为3类...薄层研究不应过于强调单一地层的厚度,而应关注地层的组合形式。重新定义了薄层,并从地质学和地球物理学角度分别对薄层进行分类,初步建立了多维度薄层分类标准。基于新的分类标准,研究调谐效应,并根据调谐响应的不同特征,将调谐分为3类:TPⅠ、TPⅡ和TPⅢ。实例1研究了中、浅层欠压实情况下,地质学中泥包砂型薄层对应于地球物理学中高包低(低阻抗地层介于高阻抗地层之间)型薄层,利用沉积微相与响应频率之间的关系(microfacies versus frequency,MVF)研究该类型薄层的沉积微相,分别预测了边滩、分支河道、泛滥平原等。实例2讨论了两套正旋回、油气同出、反射特征差异明显的薄层类型,针对地质特征相似,地震响应差别较大的薄层,依次进行了岩石物理分析、数值正演模拟、高压物性分析和气油比分析等研究,预测了凝析气藏和轻质油藏的分布范围。展开更多
海上A油田上部为薄凝析气层,下部为油层。考虑气层储量小、海上作业成本高,该油田采用油气层同时开采方式进行生产。借鉴气井电潜泵-气举组合排水采气的设计思路,文中设计了本井气气举-电潜泵组合举升方案,用气层气来辅助电潜泵采油。...海上A油田上部为薄凝析气层,下部为油层。考虑气层储量小、海上作业成本高,该油田采用油气层同时开采方式进行生产。借鉴气井电潜泵-气举组合排水采气的设计思路,文中设计了本井气气举-电潜泵组合举升方案,用气层气来辅助电潜泵采油。采用该方案可较单一电潜泵举升方案降低电机功率49.45~58.42 k W。另外,本井气气举不同于人工气举,其孔板阀过气量不能人为控制,为此,又研究开发了相关软件,并耦合管网模型,对油嘴尺寸、孔板阀过气量、累计过气量和储层压力等进行预测。研究成果的应用能够大大节省开采成本,智能预测生产动态,符合海上智能、安全、节能的开发理念。展开更多
海上B油田上部存在薄的气层,海上作业成本高,限制了钻井的数量,因此采用3井对油气层同时进行开采。油管采油、环空采气的开采方式没有充分利用气层的能量。受气举采油的启发,利用井气来实现"自我气举",充分利用了上部凝析气...海上B油田上部存在薄的气层,海上作业成本高,限制了钻井的数量,因此采用3井对油气层同时进行开采。油管采油、环空采气的开采方式没有充分利用气层的能量。受气举采油的启发,利用井气来实现"自我气举",充分利用了上部凝析气层的能量。井气气举到地层压力为22 MPa时,气举采油达不到配产,此时采用井气气举+气举—电潜泵组合举升方案来接替采油。该方案较自喷+电潜泵接替举升(油管采油,环空采气)方案可节省功率49.45~58.42 k W,节能效果明显。井气气举+气举—电潜泵组合举升方案设计对海上油田高效、安全、经济的开发具有指导意义。展开更多
We present the first successful application of three-component seismic data to thin interbedded reservoir characterization in the Daqing placanticline of the LMD oilfield. The oilfield has reached the final high water...We present the first successful application of three-component seismic data to thin interbedded reservoir characterization in the Daqing placanticline of the LMD oilfield. The oilfield has reached the final high water cut stage and the principal problem is how to recognize the boundaries of sand layers that are thicker than 2 m. Conventional interpretation of single PP-wave seismic data results in multiple solutions, whereas the introduction of PS-wave enhances the reliability of interpretation. We analyze the gas reservoir characteristics by joint PP- and PS-waves, and use the amplitude and frequency decomposition attributes to delineate the gas reservoir boundaries because of the minimal effect of fl uids on S-wave. We perform joint inversion of PP- and PS-waves to obtain V P/V S, λρ, and μρ and map the lithology changes by using density, λρ, and μρ. The 3D–3C attribute λρ slices describe the sand layers distribution, while considering the well log data, and point to favorable region for tapping the remaining oil.展开更多
For thin oil rim reservoir with gas cap and edge water, it is helpful to improve the development effect to find out the distribution law of remaining oil in this kind of reservoirs. For this reason, taking the narrow ...For thin oil rim reservoir with gas cap and edge water, it is helpful to improve the development effect to find out the distribution law of remaining oil in this kind of reservoirs. For this reason, taking the narrow oil rim reservoir with gas cap and edge water of Oilfield A in Bohai Sea as a case, the main controlling factors, including reservoir structure, fault, gas cap energy, edge water energy and well pattern, affecting the distribution of residual oil in this kind of reservoir were analyzed by using the data of core, logging, paleogeomorphology and production. Then, the distribution law of remaining oil was summarized. Generally, the remaining oil distribution is mainly potato-shaped or strip-shaped in plane. Vertically, it depends on the energy of gas cap and edge water. For the reservoir with big gas gap and weak edge water, the remaining oil mainly lies in the bottom of oil column. And for the reservoir with small gas gap and strong edge water, the remaining oil mainly locates at the top of oil column. Aiming at different distribution modes of remaining oil, the corresponding potential tapping strategies of horizontal wells are put forward: in the late stage of development, for the reservoir with big gas gap and weak edge water, the remaining oil concentrates at the bottom of the oil column, and the position of horizontal well should be placed at the lower 1/3 to the lower 1/5 of the oil column;for the reservoir with small gas cap and strong edge water, the remaining oil locates at the top of the oil column, and the position of horizontal well should be put at the upper 1/5 to the upper 1/3 of the oil column height, vertically. Based on the study on remaining oil of Oilfield A, a potential tapping strategy of well pattern thickening and vertical position optimization of horizontal well was proposed. This strategy guided the efficient implementation of the comprehensive adjustment plan of the oilfield. Moreover, 18 infill development wells were implemented in Oilfield A, and the average production of th展开更多
文摘薄层研究不应过于强调单一地层的厚度,而应关注地层的组合形式。重新定义了薄层,并从地质学和地球物理学角度分别对薄层进行分类,初步建立了多维度薄层分类标准。基于新的分类标准,研究调谐效应,并根据调谐响应的不同特征,将调谐分为3类:TPⅠ、TPⅡ和TPⅢ。实例1研究了中、浅层欠压实情况下,地质学中泥包砂型薄层对应于地球物理学中高包低(低阻抗地层介于高阻抗地层之间)型薄层,利用沉积微相与响应频率之间的关系(microfacies versus frequency,MVF)研究该类型薄层的沉积微相,分别预测了边滩、分支河道、泛滥平原等。实例2讨论了两套正旋回、油气同出、反射特征差异明显的薄层类型,针对地质特征相似,地震响应差别较大的薄层,依次进行了岩石物理分析、数值正演模拟、高压物性分析和气油比分析等研究,预测了凝析气藏和轻质油藏的分布范围。
文摘海上A油田上部为薄凝析气层,下部为油层。考虑气层储量小、海上作业成本高,该油田采用油气层同时开采方式进行生产。借鉴气井电潜泵-气举组合排水采气的设计思路,文中设计了本井气气举-电潜泵组合举升方案,用气层气来辅助电潜泵采油。采用该方案可较单一电潜泵举升方案降低电机功率49.45~58.42 k W。另外,本井气气举不同于人工气举,其孔板阀过气量不能人为控制,为此,又研究开发了相关软件,并耦合管网模型,对油嘴尺寸、孔板阀过气量、累计过气量和储层压力等进行预测。研究成果的应用能够大大节省开采成本,智能预测生产动态,符合海上智能、安全、节能的开发理念。
文摘海上B油田上部存在薄的气层,海上作业成本高,限制了钻井的数量,因此采用3井对油气层同时进行开采。油管采油、环空采气的开采方式没有充分利用气层的能量。受气举采油的启发,利用井气来实现"自我气举",充分利用了上部凝析气层的能量。井气气举到地层压力为22 MPa时,气举采油达不到配产,此时采用井气气举+气举—电潜泵组合举升方案来接替采油。该方案较自喷+电潜泵接替举升(油管采油,环空采气)方案可节省功率49.45~58.42 k W,节能效果明显。井气气举+气举—电潜泵组合举升方案设计对海上油田高效、安全、经济的开发具有指导意义。
基金sponsored by the China Postdoctoral Science Foundation Projects(2014M550779)
文摘We present the first successful application of three-component seismic data to thin interbedded reservoir characterization in the Daqing placanticline of the LMD oilfield. The oilfield has reached the final high water cut stage and the principal problem is how to recognize the boundaries of sand layers that are thicker than 2 m. Conventional interpretation of single PP-wave seismic data results in multiple solutions, whereas the introduction of PS-wave enhances the reliability of interpretation. We analyze the gas reservoir characteristics by joint PP- and PS-waves, and use the amplitude and frequency decomposition attributes to delineate the gas reservoir boundaries because of the minimal effect of fl uids on S-wave. We perform joint inversion of PP- and PS-waves to obtain V P/V S, λρ, and μρ and map the lithology changes by using density, λρ, and μρ. The 3D–3C attribute λρ slices describe the sand layers distribution, while considering the well log data, and point to favorable region for tapping the remaining oil.
文摘For thin oil rim reservoir with gas cap and edge water, it is helpful to improve the development effect to find out the distribution law of remaining oil in this kind of reservoirs. For this reason, taking the narrow oil rim reservoir with gas cap and edge water of Oilfield A in Bohai Sea as a case, the main controlling factors, including reservoir structure, fault, gas cap energy, edge water energy and well pattern, affecting the distribution of residual oil in this kind of reservoir were analyzed by using the data of core, logging, paleogeomorphology and production. Then, the distribution law of remaining oil was summarized. Generally, the remaining oil distribution is mainly potato-shaped or strip-shaped in plane. Vertically, it depends on the energy of gas cap and edge water. For the reservoir with big gas gap and weak edge water, the remaining oil mainly lies in the bottom of oil column. And for the reservoir with small gas gap and strong edge water, the remaining oil mainly locates at the top of oil column. Aiming at different distribution modes of remaining oil, the corresponding potential tapping strategies of horizontal wells are put forward: in the late stage of development, for the reservoir with big gas gap and weak edge water, the remaining oil concentrates at the bottom of the oil column, and the position of horizontal well should be placed at the lower 1/3 to the lower 1/5 of the oil column;for the reservoir with small gas cap and strong edge water, the remaining oil locates at the top of the oil column, and the position of horizontal well should be put at the upper 1/5 to the upper 1/3 of the oil column height, vertically. Based on the study on remaining oil of Oilfield A, a potential tapping strategy of well pattern thickening and vertical position optimization of horizontal well was proposed. This strategy guided the efficient implementation of the comprehensive adjustment plan of the oilfield. Moreover, 18 infill development wells were implemented in Oilfield A, and the average production of th