The printable electrode interlayer with excellent thickness tolerance is crucial for mass production of organic solar cells(OSCs)by solution-based print techniques. Herein, high-quality printable SnO2 films are simply...The printable electrode interlayer with excellent thickness tolerance is crucial for mass production of organic solar cells(OSCs)by solution-based print techniques. Herein, high-quality printable SnO2 films are simply fabricated by spin-coating or bladecoating the chemical precipitated SnO2 colloid precursor with post thermal annealing treatment. The SnO2 films possess outstanding optical and electrical properties, especially extreme thickness-insensitivity. The interfacial electron trap density of SnO2 cathode interlayers(CILs) are very low and show negligible increase as the thicknesses increase from 10 to 160 nm,resulting in slight change of the power conversion efficiencies(PCEs) of the PM6:Y6 based OSCs from 16.10% to 13.07%. For blade-coated SnO2 CIL, the PCE remains high up to 12.08% even the thickness of SnO2 CIL is high up to 530 nm. More strikingly, the large-area OSCs of 100 mm2 with printed SnO2 CILs obtain a high efficiency of 12.74%. To the best of our knowledge, this work presents the first example for the high-performance and large-area OSCs with the thickness-insensitive SnO2 CIL.展开更多
An alcohol-soluble,environmentally friendly,and low-cost surfactant-encapsulated polyoxometalate complex[(C8H17)4N]4[SiW_(12)O40](TOASiW_(12))as a cathode interlayer(CIL)has exhibited excellent universality for variou...An alcohol-soluble,environmentally friendly,and low-cost surfactant-encapsulated polyoxometalate complex[(C8H17)4N]4[SiW_(12)O40](TOASiW_(12))as a cathode interlayer(CIL)has exhibited excellent universality for various active layers and cathodes in nonfullerene polymer solar cells(NF-PSCs).In particular,incorporating TOASiW_(12) as the CIL enhanced power conversion efficiencies(PCEs)of the PM6:Y6-based NF-PSCs with Al or Ag cathode to 16.14%and 15.89%,respectively,and the PCEs of PM6:BTP-BO4Cl-based NF-PSCs with Al or Ag cathode to 17.04%and 17.00%,respectively.More importantly,the performances of the devices with TOASiW_(12) were insensitive to the TOASiW_(12) thickness from 3 to 33 nm.Furthermore,the NF-PSCs with TOASiW_(12) exhibited better device stability.Combined characterization of the photocurrent density versus effective voltage,capacitance versus voltage and electron mobility demonstrated that TOASiW_(12) as the CIL effectively promoted exciton dissociation,charge-carrier extraction,built-in potential,charge-carrier density,and electron mobility in the NF-PSCs.These findings suggest that TOASiW_(12) is a promising,competitive CIL for NF-PSCs fabricated by roll-to-roll processing.展开更多
Poly(3-hexylthiophene)(P3HT) is a low-cost polymer donor for organic solar cells (OSCs). However, the P3HT-based OSCs usually give low power conversion efficiencies (PCEs) due to the wide bandgap and the high-lying en...Poly(3-hexylthiophene)(P3HT) is a low-cost polymer donor for organic solar cells (OSCs). However, the P3HT-based OSCs usually give low power conversion efficiencies (PCEs) due to the wide bandgap and the high-lying energy levels of P3HT. To solve this problem, in this work, we design and synthesize a new A-D-A type non-fullerene acceptor, DFPCBR, which owns an electron-donating (D) core constructed by linking a 2,5-difluorobenzene ring with two cyclopentadithiophene moieties, and two electron-accepting (A) end-groups of benzo[c][1,2,5]thiadiazole connected with 3-ethyl-2-thioxothiazolidin-4-one. Because of the strong electron-donating ability and large conjugation effect of D core, DFPCBR shows appropriate energy levels and a narrow bandgap matching well with those of P3HT. Therefore, with P3HT as the donor and DFPCBR as the acceptor, the OSCs possess broad absorption range from 350 nm to 780 nm and the reduced energy loss (Eloss) of 0.79 eV (compared with ~1.40 eV for the P3HT:PC61BM device), providing a good PCE of 5.34% with a high open-circuit voltage (VOC) of 0.80 V. Besides, we observe that the photovoltaic performances of these devices are insensitive to the thickness of the active layers:even if the active layer is as thick as 320 nm,~80%of the best PCE is maintained, which is rarely reported for fullerene-free P3HT-based OSCs, suggesting that DFPCBR has the potential application in commercial OSCs in the future.展开更多
Two non-conjugated polymers PEIE-DBO and PEIE-DCO, prepared by quaternization of polyethyleneimine ethoxylate by 1,8-dibromooctane and 1,8-dichlorooctane respectively, are developed as electron transport layer(ETL) in...Two non-conjugated polymers PEIE-DBO and PEIE-DCO, prepared by quaternization of polyethyleneimine ethoxylate by 1,8-dibromooctane and 1,8-dichlorooctane respectively, are developed as electron transport layer(ETL) in high-performance inverted organic solar cells(OSCs), and the effects of halide ions on polymeric photoelectric performance are fully investigated. PEIE-DBO possesses higher electron mobility(3.68×10-4 cm2 V-1s-1), higher conductivity and more efficient exciton dissociation and electron extraction, attributed to its lower work function(3.94 eV) than that of PEIE-DCO, which results in better photovoltaic performance in OSCs. The inverted OSCs with PTB7-Th: PC71BM as photoactive layer and PEIE-DBO as ETL exhibit higher PCE of 10.52%, 9.45% and 9.09% at the thickness of 9, 35 and 50 nm,respectively. To our knowledge, PEIE-DBO possesses the best thickness-insensitive performance in polymeric ETLs of inverted fullerene-based OSCs. Furthermore, PEIE-DBO was used to fabricate the inverted non-fullerene OSCs(PM6:Y6) and obtained a high PCE of 15.74%, which indicates that PEIE-DBO is effective both in fullerene-based OSCs and fullerene-free OSCs.展开更多
基金supported by the National Natural Science Foundation of China (51873007, 51961165102, 21835006)the Fundamental Research Funds for the Central Universities in China (2019MS025, 2018MS032, 2017MS027, 2017XS084)。
文摘The printable electrode interlayer with excellent thickness tolerance is crucial for mass production of organic solar cells(OSCs)by solution-based print techniques. Herein, high-quality printable SnO2 films are simply fabricated by spin-coating or bladecoating the chemical precipitated SnO2 colloid precursor with post thermal annealing treatment. The SnO2 films possess outstanding optical and electrical properties, especially extreme thickness-insensitivity. The interfacial electron trap density of SnO2 cathode interlayers(CILs) are very low and show negligible increase as the thicknesses increase from 10 to 160 nm,resulting in slight change of the power conversion efficiencies(PCEs) of the PM6:Y6 based OSCs from 16.10% to 13.07%. For blade-coated SnO2 CIL, the PCE remains high up to 12.08% even the thickness of SnO2 CIL is high up to 530 nm. More strikingly, the large-area OSCs of 100 mm2 with printed SnO2 CILs obtain a high efficiency of 12.74%. To the best of our knowledge, this work presents the first example for the high-performance and large-area OSCs with the thickness-insensitive SnO2 CIL.
基金supported by grants from the National Basic Research Program of China(no.2014CB643505)the Natural Science Foundation of Jilin Province,China(no.20170101169JC)+2 种基金the Open Project of the State Key Laboratory of Supramolecular Structure and Materials(no.sklssm202043)the Graduate Innovation Fund of Jilin University(no.101832020CX339)W.L.and C.Z.acknowledge the support from the Jiangxi Provincial Department of Science and Technology(nos.20192ACB20009 and 20192BBEL50026).
文摘An alcohol-soluble,environmentally friendly,and low-cost surfactant-encapsulated polyoxometalate complex[(C8H17)4N]4[SiW_(12)O40](TOASiW_(12))as a cathode interlayer(CIL)has exhibited excellent universality for various active layers and cathodes in nonfullerene polymer solar cells(NF-PSCs).In particular,incorporating TOASiW_(12) as the CIL enhanced power conversion efficiencies(PCEs)of the PM6:Y6-based NF-PSCs with Al or Ag cathode to 16.14%and 15.89%,respectively,and the PCEs of PM6:BTP-BO4Cl-based NF-PSCs with Al or Ag cathode to 17.04%and 17.00%,respectively.More importantly,the performances of the devices with TOASiW_(12) were insensitive to the TOASiW_(12) thickness from 3 to 33 nm.Furthermore,the NF-PSCs with TOASiW_(12) exhibited better device stability.Combined characterization of the photocurrent density versus effective voltage,capacitance versus voltage and electron mobility demonstrated that TOASiW_(12) as the CIL effectively promoted exciton dissociation,charge-carrier extraction,built-in potential,charge-carrier density,and electron mobility in the NF-PSCs.These findings suggest that TOASiW_(12) is a promising,competitive CIL for NF-PSCs fabricated by roll-to-roll processing.
基金supported by the National Natural Science Foundation of China(Nos. 21875216, 21734008, 21474088, 51473142, 51561145001, 51620105006, 61721005)Zhejiang Province Science and Technology Plan(No.2018C01047)Research Grant Council of Hong Kong(General Research Fund No. 14314216, CUHK Direct Grant No. 4053227)
文摘Poly(3-hexylthiophene)(P3HT) is a low-cost polymer donor for organic solar cells (OSCs). However, the P3HT-based OSCs usually give low power conversion efficiencies (PCEs) due to the wide bandgap and the high-lying energy levels of P3HT. To solve this problem, in this work, we design and synthesize a new A-D-A type non-fullerene acceptor, DFPCBR, which owns an electron-donating (D) core constructed by linking a 2,5-difluorobenzene ring with two cyclopentadithiophene moieties, and two electron-accepting (A) end-groups of benzo[c][1,2,5]thiadiazole connected with 3-ethyl-2-thioxothiazolidin-4-one. Because of the strong electron-donating ability and large conjugation effect of D core, DFPCBR shows appropriate energy levels and a narrow bandgap matching well with those of P3HT. Therefore, with P3HT as the donor and DFPCBR as the acceptor, the OSCs possess broad absorption range from 350 nm to 780 nm and the reduced energy loss (Eloss) of 0.79 eV (compared with ~1.40 eV for the P3HT:PC61BM device), providing a good PCE of 5.34% with a high open-circuit voltage (VOC) of 0.80 V. Besides, we observe that the photovoltaic performances of these devices are insensitive to the thickness of the active layers:even if the active layer is as thick as 320 nm,~80%of the best PCE is maintained, which is rarely reported for fullerene-free P3HT-based OSCs, suggesting that DFPCBR has the potential application in commercial OSCs in the future.
基金the support from the National Natural Science Foundation of China (51873177, 51573153, 61564003 and 21875204)the group of Advanced Photoelectricity and Supermolecule Function Materials of Ministry of Education (IRT-17R90)+1 种基金the Hunan 2011 Collaborative Innovation Center of Chemical Engineering & Technology with Environmental Benignity and Effective Resource Utilizationsupport from Guangxi Bagui Scholar Program and Guangxi Natural Science Foundation (2015GXNSFGA139002)。
文摘Two non-conjugated polymers PEIE-DBO and PEIE-DCO, prepared by quaternization of polyethyleneimine ethoxylate by 1,8-dibromooctane and 1,8-dichlorooctane respectively, are developed as electron transport layer(ETL) in high-performance inverted organic solar cells(OSCs), and the effects of halide ions on polymeric photoelectric performance are fully investigated. PEIE-DBO possesses higher electron mobility(3.68×10-4 cm2 V-1s-1), higher conductivity and more efficient exciton dissociation and electron extraction, attributed to its lower work function(3.94 eV) than that of PEIE-DCO, which results in better photovoltaic performance in OSCs. The inverted OSCs with PTB7-Th: PC71BM as photoactive layer and PEIE-DBO as ETL exhibit higher PCE of 10.52%, 9.45% and 9.09% at the thickness of 9, 35 and 50 nm,respectively. To our knowledge, PEIE-DBO possesses the best thickness-insensitive performance in polymeric ETLs of inverted fullerene-based OSCs. Furthermore, PEIE-DBO was used to fabricate the inverted non-fullerene OSCs(PM6:Y6) and obtained a high PCE of 15.74%, which indicates that PEIE-DBO is effective both in fullerene-based OSCs and fullerene-free OSCs.