In this paper,a new efficient,and at the same time,very simple and general class of thermodynamically compatiblefinite volume schemes is introduced for the discretization of nonlinear,overdetermined,and thermodynamicall...In this paper,a new efficient,and at the same time,very simple and general class of thermodynamically compatiblefinite volume schemes is introduced for the discretization of nonlinear,overdetermined,and thermodynamically compatiblefirst-order hyperbolic systems.By construction,the proposed semi-discrete method satisfies an entropy inequality and is nonlinearly stable in the energy norm.A very peculiar feature of our approach is that entropy is discretized directly,while total energy conservation is achieved as a mere consequence of the thermodynamically compatible discretization.The new schemes can be applied to a very general class of nonlinear systems of hyperbolic PDEs,including both,conservative and non-conservative products,as well as potentially stiff algebraic relaxation source terms,provided that the underlying system is overdetermined and therefore satisfies an additional extra conservation law,such as the conservation of total energy density.The proposed family offinite volume schemes is based on the seminal work of Abgrall[1],where for thefirst time a completely general methodology for the design of thermodynamically compatible numerical methods for overdetermined hyperbolic PDE was presented.We apply our new approach to three particular thermodynamically compatible systems:the equations of ideal magnetohydrodynamics(MHD)with thermodynamically compatible generalized Lagrangian multiplier(GLM)divergence cleaning,the unifiedfirst-order hyperbolic model of continuum mechanics proposed by Godunov,Peshkov,and Romenski(GPR model)and thefirst-order hyperbolic model for turbulent shallow waterflows of Gavrilyuk et al.In addition to formal mathematical proofs of the properties of our newfinite volume schemes,we also present a large set of numerical results in order to show their potential,efficiency,and practical applicability.展开更多
A series of linear poly(ethylene oxide)-b-poly(4-vinylbenzyl chloride)-b-poly(4-tert-butylstyrene)(PEO_(113)-b-PVBC_(130)-b-Pt BS_(x)or E_(113)V_(130)T_(x))triblock terpolymers with various lengths x(=20,33,66,104,215...A series of linear poly(ethylene oxide)-b-poly(4-vinylbenzyl chloride)-b-poly(4-tert-butylstyrene)(PEO_(113)-b-PVBC_(130)-b-Pt BS_(x)or E_(113)V_(130)T_(x))triblock terpolymers with various lengths x(=20,33,66,104,215)of Pt BS block were synthesized via a two-step reversible addition-fragmentation chain transfer(RAFT)polymerization.The E_(113)V_(130)T_(x)triblock terpolymers were non-crystalline because the PVBC and Pt BS blocks strongly hindered the crystallization of PEO block.The effects of Pt BS block length x on the phase structures of E_(113)V_(130)T_(x)triblock terpolymers were investigated by combined techniques of small-angle X-ray scattering(SAXS)and transmission electron microscopy(TEM).It was found that with increasing x from20 to 215,the phase structure of E_(113)V_(130)T_(x)triblock terpolymers became more ordered and changed from disordered structure,hexagonally-packed cylinder(HEX),hexagonally perforated layer(HPL),to lamellar(LAM)phase structures.Temperature-variable SAXS measurements showed that the HEX,HPL and LAM phase structures obtained for E_(113)V_(130)T_(66),E_(113)V_(130)T_(104)and E_(113)V_(130)T_(215)by thermal annealing,respectively,were thermodynamically stable in the temperature range of 30-170℃.展开更多
Conventional gels manifest monotonous swelling or shrinking performance upon immersing in solvents until reaching an equilibrium state. Recently, we discovered that the “hydrophobic hydrogels” prepared from hydropho...Conventional gels manifest monotonous swelling or shrinking performance upon immersing in solvents until reaching an equilibrium state. Recently, we discovered that the “hydrophobic hydrogels” prepared from hydrophobic polymer networks demonstrated dynamic swelling performance without equilibrium states. Upon water immersion, the gels expanded tremendously at the first stage until reaching a swelling peak;subsequently, the gels shrunk at an extremely slow rate. While this phenomenon endows the material with an unusual feature, more efforts are highly demanding for the full understanding of this performance. Herein, we systematically investigate the hydrophobic hydrogels’ swelling kinetics by screening the organic solvent dependence, polymer effect, and temperature impact. It is revealed that the chemical structure of gels greatly influences the swelling kinetics. The higher the networks’ hydrophobicity, the slower the swelling kinetics. Meanwhile, organic solvents demonstrate a limited effect on the dynamic swelling performance. Moreover, higher temperature significantly accelerates the whole volume change process. Based on the swelling performance, we further develop hydrogel-based soft devices with timeprogrammable two-dimensional and three-dimensional shape-shifting performances.展开更多
This study demonstrates that our previously reported polywraplex, a synthetic siRNA carrier consisting of a uni-molecular polyplex core of customizable size and a self-assembled triblock copolymer envelop, may be cons...This study demonstrates that our previously reported polywraplex, a synthetic siRNA carrier consisting of a uni-molecular polyplex core of customizable size and a self-assembled triblock copolymer envelop, may be constructed using dendrimers as the crosslinking junctions. Replacing the branched low molecular weight PEI with polyamidoamine(PAMAM) dendrimer in the zeta potential regulated polymerization resulted in the similar network structured cationic polymer with electron microscopically visible crosslinking junctions. This visibility may offer a convenient way to characterize the molecular structure of the rationally designed networked siRNA-packing cationic polymer without altering its chemical properties and biologic functions. A series of physical-chemical characterizations and biological assays, comprising size, zeta potential, pre-phagocytic siRNA leaking and degradation, and silencing of functional genes, confirmed that the advanced properties of polywraplexes remained with the dendrimer junctions. Although sixth generation PAMAM dendrimer was used as the crosslinking junctions in the size-customizable polymerization for electron microscopic observation, lower generation dendrimer should also work in case more practical and structurally defined cationic polymer is needed.展开更多
文摘In this paper,a new efficient,and at the same time,very simple and general class of thermodynamically compatiblefinite volume schemes is introduced for the discretization of nonlinear,overdetermined,and thermodynamically compatiblefirst-order hyperbolic systems.By construction,the proposed semi-discrete method satisfies an entropy inequality and is nonlinearly stable in the energy norm.A very peculiar feature of our approach is that entropy is discretized directly,while total energy conservation is achieved as a mere consequence of the thermodynamically compatible discretization.The new schemes can be applied to a very general class of nonlinear systems of hyperbolic PDEs,including both,conservative and non-conservative products,as well as potentially stiff algebraic relaxation source terms,provided that the underlying system is overdetermined and therefore satisfies an additional extra conservation law,such as the conservation of total energy density.The proposed family offinite volume schemes is based on the seminal work of Abgrall[1],where for thefirst time a completely general methodology for the design of thermodynamically compatible numerical methods for overdetermined hyperbolic PDE was presented.We apply our new approach to three particular thermodynamically compatible systems:the equations of ideal magnetohydrodynamics(MHD)with thermodynamically compatible generalized Lagrangian multiplier(GLM)divergence cleaning,the unifiedfirst-order hyperbolic model of continuum mechanics proposed by Godunov,Peshkov,and Romenski(GPR model)and thefirst-order hyperbolic model for turbulent shallow waterflows of Gavrilyuk et al.In addition to formal mathematical proofs of the properties of our newfinite volume schemes,we also present a large set of numerical results in order to show their potential,efficiency,and practical applicability.
基金the National Natural Science Foundation of China(Nos.21875214,21674097 and 21774111)for financial support。
文摘A series of linear poly(ethylene oxide)-b-poly(4-vinylbenzyl chloride)-b-poly(4-tert-butylstyrene)(PEO_(113)-b-PVBC_(130)-b-Pt BS_(x)or E_(113)V_(130)T_(x))triblock terpolymers with various lengths x(=20,33,66,104,215)of Pt BS block were synthesized via a two-step reversible addition-fragmentation chain transfer(RAFT)polymerization.The E_(113)V_(130)T_(x)triblock terpolymers were non-crystalline because the PVBC and Pt BS blocks strongly hindered the crystallization of PEO block.The effects of Pt BS block length x on the phase structures of E_(113)V_(130)T_(x)triblock terpolymers were investigated by combined techniques of small-angle X-ray scattering(SAXS)and transmission electron microscopy(TEM).It was found that with increasing x from20 to 215,the phase structure of E_(113)V_(130)T_(x)triblock terpolymers became more ordered and changed from disordered structure,hexagonally-packed cylinder(HEX),hexagonally perforated layer(HPL),to lamellar(LAM)phase structures.Temperature-variable SAXS measurements showed that the HEX,HPL and LAM phase structures obtained for E_(113)V_(130)T_(66),E_(113)V_(130)T_(104)and E_(113)V_(130)T_(215)by thermal annealing,respectively,were thermodynamically stable in the temperature range of 30-170℃.
基金financial support from the National Natural Science Foundation of China (NSFC, Nos.51903253, 51903257)Natural Science Foundation of GuangdongProvince of China (Nos. 2019A1515011150, 2019A1515011258)+1 种基金Macao University of Science and Technology Foundation (No. FRG-19-003-SP)the Science and Technology Development Fund of Macao (Nos. FDCT 0009/2019/A, 0083/2019/A2, 0007/2019/AKP,0009/2020/AMJ)。
文摘Conventional gels manifest monotonous swelling or shrinking performance upon immersing in solvents until reaching an equilibrium state. Recently, we discovered that the “hydrophobic hydrogels” prepared from hydrophobic polymer networks demonstrated dynamic swelling performance without equilibrium states. Upon water immersion, the gels expanded tremendously at the first stage until reaching a swelling peak;subsequently, the gels shrunk at an extremely slow rate. While this phenomenon endows the material with an unusual feature, more efforts are highly demanding for the full understanding of this performance. Herein, we systematically investigate the hydrophobic hydrogels’ swelling kinetics by screening the organic solvent dependence, polymer effect, and temperature impact. It is revealed that the chemical structure of gels greatly influences the swelling kinetics. The higher the networks’ hydrophobicity, the slower the swelling kinetics. Meanwhile, organic solvents demonstrate a limited effect on the dynamic swelling performance. Moreover, higher temperature significantly accelerates the whole volume change process. Based on the swelling performance, we further develop hydrogel-based soft devices with timeprogrammable two-dimensional and three-dimensional shape-shifting performances.
基金the grant of the Natural Science Foundation of China(Grant nos.81373352 and 81690262)。
文摘This study demonstrates that our previously reported polywraplex, a synthetic siRNA carrier consisting of a uni-molecular polyplex core of customizable size and a self-assembled triblock copolymer envelop, may be constructed using dendrimers as the crosslinking junctions. Replacing the branched low molecular weight PEI with polyamidoamine(PAMAM) dendrimer in the zeta potential regulated polymerization resulted in the similar network structured cationic polymer with electron microscopically visible crosslinking junctions. This visibility may offer a convenient way to characterize the molecular structure of the rationally designed networked siRNA-packing cationic polymer without altering its chemical properties and biologic functions. A series of physical-chemical characterizations and biological assays, comprising size, zeta potential, pre-phagocytic siRNA leaking and degradation, and silencing of functional genes, confirmed that the advanced properties of polywraplexes remained with the dendrimer junctions. Although sixth generation PAMAM dendrimer was used as the crosslinking junctions in the size-customizable polymerization for electron microscopic observation, lower generation dendrimer should also work in case more practical and structurally defined cationic polymer is needed.
基金supported by the National Natural Science Foundation of China(32271545 and 31972030)Major Program of Haihe Laboratory of Synthetic Biology(22HHSWSS00016 and 22HHSWSS00003)+2 种基金Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project(TSBICIP-KJGG-008-03 and TSBICIP-PTJJ-007-10)Youth Promotion Association of Chinese Academy of Sciences(CAS)(2021176)CAS Project for Young Scientists in Basic Research(YSBR-072)。