A multistage warm/hot forming is simulated for the cross grove outer race ofconstant velocity joint, using a thermo-mechanical coupled rigid viscoplastic finite element method,and specially some problem for process de...A multistage warm/hot forming is simulated for the cross grove outer race ofconstant velocity joint, using a thermo-mechanical coupled rigid viscoplastic finite element method,and specially some problem for process development and die design are analyzed. A forming testshows that computed results have good agreement with experimental results. Above obtained resultscan be applied to development of multistage warm/hot forming process and die design for outer race.展开更多
The 3-D thermo-mechanical coupled elasto-plastic finite element method (FEM)was used for the simulation of the two-pass continuous hot rolling process of 60SiMnA spring steelbars and rods using MARC/AutoForge3.1 softw...The 3-D thermo-mechanical coupled elasto-plastic finite element method (FEM)was used for the simulation of the two-pass continuous hot rolling process of 60SiMnA spring steelbars and rods using MARC/AutoForge3.1 software. The simulated results visualize the metal flow andthe dynamic evolutions of the strain, stress and temperature during the continuous hot rolling,especially inside the work-piece. It is shown that the non-uniform distributions of the strain,stress and temperature on the longitudinal and transverse sections are a distinct characteristic ofthe continuous hot rolling, which can be used as basic data for improving the tool design,predicting and controlling the micro-structural evolution of a bar and rod.展开更多
Based on the commercial computational software, a three-dimensional finite ele- ment model to simulate the thermo-mechanical behaviors in a nuclear fuel rod is established; By taking into consideration irradiation-swe...Based on the commercial computational software, a three-dimensional finite ele- ment model to simulate the thermo-mechanical behaviors in a nuclear fuel rod is established; By taking into consideration irradiation-swelling of the pellet and the irradiation damage effects in the cladding together with the coupling effects between the temperature field and the mechanical field, the user subroutines to define the special material performance and boundary conditions have been developed independently and validated. Three-dimensional numerical simulation of the thermo-mechanical coupling behaviors in a nuclear fuel rod is carried out, and the evolution rules of the important thermal and mechanical variables are obtained and analyzed. The research re- sults indicate that: (i) the fuel pellets will be in contact with the cladding at high burnup, which will induce a strong mechanical interaction between them; (2) the irradiation creep effect plays an important role in the mechanical behavior evolution in the nuclear fuel rod.展开更多
The models of stress corrosion, pressure solution and flee-face dissolution/precipitation were introduced. Taking a hypothetical nuclear waste repository in an unsaturated dual-porosity rock mass as the calculation ob...The models of stress corrosion, pressure solution and flee-face dissolution/precipitation were introduced. Taking a hypothetical nuclear waste repository in an unsaturated dual-porosity rock mass as the calculation objective, four cases were designed 1) the fracture aperture is a function of stress corrosion, pressure solution and free-face dissolution/precipitation; 2) the fracture aperture changes with stress corrosion and pressure solution; 3) the fracture aperture changes with pressure solution and free-face dissolution/precipitation; 4) the fracture aperture is only a function of pressure solution, and the matrix porosity is also a function of stress in these four cases. Then, the corresponding two-dimensional FEM analyses for the coupled thermo-hydro-mechanical processes were carried out. The results show that the effects of stress corrosion are more prominent than those of pressure solution and free-face dissolution/precipitation, and the fracture aperture and relevant permeability caused by the stress corrosion arc only about 1/5 and 1/1000 of the corresponding values created by the pressure solution and free-face dissolution/precipitation, respectively Under the action of temperature field from released heat, the negative pore and fracture pressures in the computation domain rise continuously, and are inversely proportional to the sealing of fracture aperture. The vector fields of flow velocity of fracture water in the cases with and without considering stress corrosion are obviously different. The differences between the magnitudes and distributions of stresses within the rock mass are very small in all cases.展开更多
文摘A multistage warm/hot forming is simulated for the cross grove outer race ofconstant velocity joint, using a thermo-mechanical coupled rigid viscoplastic finite element method,and specially some problem for process development and die design are analyzed. A forming testshows that computed results have good agreement with experimental results. Above obtained resultscan be applied to development of multistage warm/hot forming process and die design for outer race.
文摘The 3-D thermo-mechanical coupled elasto-plastic finite element method (FEM)was used for the simulation of the two-pass continuous hot rolling process of 60SiMnA spring steelbars and rods using MARC/AutoForge3.1 software. The simulated results visualize the metal flow andthe dynamic evolutions of the strain, stress and temperature during the continuous hot rolling,especially inside the work-piece. It is shown that the non-uniform distributions of the strain,stress and temperature on the longitudinal and transverse sections are a distinct characteristic ofthe continuous hot rolling, which can be used as basic data for improving the tool design,predicting and controlling the micro-structural evolution of a bar and rod.
基金Project supported by the National Natural Science Foundation of China(Nos.11172068,91226101,11072062 and91026005)the Research Fund for the Doctoral Program of Higher Education of China(No.20110071110013)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA01020304)
文摘Based on the commercial computational software, a three-dimensional finite ele- ment model to simulate the thermo-mechanical behaviors in a nuclear fuel rod is established; By taking into consideration irradiation-swelling of the pellet and the irradiation damage effects in the cladding together with the coupling effects between the temperature field and the mechanical field, the user subroutines to define the special material performance and boundary conditions have been developed independently and validated. Three-dimensional numerical simulation of the thermo-mechanical coupling behaviors in a nuclear fuel rod is carried out, and the evolution rules of the important thermal and mechanical variables are obtained and analyzed. The research re- sults indicate that: (i) the fuel pellets will be in contact with the cladding at high burnup, which will induce a strong mechanical interaction between them; (2) the irradiation creep effect plays an important role in the mechanical behavior evolution in the nuclear fuel rod.
基金Project(2010CB732101) supported by the National Basic Research Program of ChinaProject(51079145) supported by the National Natural Science Foundation of ChinaProject(2009BAK53B03) supported by the National Key Technology R&D Program of China
文摘The models of stress corrosion, pressure solution and flee-face dissolution/precipitation were introduced. Taking a hypothetical nuclear waste repository in an unsaturated dual-porosity rock mass as the calculation objective, four cases were designed 1) the fracture aperture is a function of stress corrosion, pressure solution and free-face dissolution/precipitation; 2) the fracture aperture changes with stress corrosion and pressure solution; 3) the fracture aperture changes with pressure solution and free-face dissolution/precipitation; 4) the fracture aperture is only a function of pressure solution, and the matrix porosity is also a function of stress in these four cases. Then, the corresponding two-dimensional FEM analyses for the coupled thermo-hydro-mechanical processes were carried out. The results show that the effects of stress corrosion are more prominent than those of pressure solution and free-face dissolution/precipitation, and the fracture aperture and relevant permeability caused by the stress corrosion arc only about 1/5 and 1/1000 of the corresponding values created by the pressure solution and free-face dissolution/precipitation, respectively Under the action of temperature field from released heat, the negative pore and fracture pressures in the computation domain rise continuously, and are inversely proportional to the sealing of fracture aperture. The vector fields of flow velocity of fracture water in the cases with and without considering stress corrosion are obviously different. The differences between the magnitudes and distributions of stresses within the rock mass are very small in all cases.