Coupled relations among temperature, phase transformation and stress have beendiscussed here in the present paper. Thermo-elasto-plastic constitutive equationsincluding creep and iterative finite element formulation d...Coupled relations among temperature, phase transformation and stress have beendiscussed here in the present paper. Thermo-elasto-plastic constitutive equationsincluding creep and iterative finite element formulation during continuous casting withphase change have also been presented.展开更多
In this study, the behavior of polycrystalline metals at different temperatures is investigated by a new thermo-elasto-plasticity constitutive theory. Based on solid mechanical and interatomic potential, the constitut...In this study, the behavior of polycrystalline metals at different temperatures is investigated by a new thermo-elasto-plasticity constitutive theory. Based on solid mechanical and interatomic potential, the constitutive equa- tion is established using a new decomposition of the deformation gradient. For polycrystalline copper and magnesium, the stress-strain curves from 77 to 764 K (copper), and 77 to 870 K (magnesium) under quasi-static uniaxial loading are calculated, and then the calculated results are compared with the experiment results. Also, it is determined that the present model has the capacity to describe the decrease of the elastic modulus and yield stress with the increasing temperature, as well as the change of hardening behaviors of the polycrystalline metals. The calculation process is simple and explicit, which makes it easy to implement into the applications.展开更多
Based on the crystal plasticity theory and interatomic potential, in this paper a new thermo-elasto-plasticity constitutive model is proposed to study the behavior of metal crystals at finite temperature. By applying ...Based on the crystal plasticity theory and interatomic potential, in this paper a new thermo-elasto-plasticity constitutive model is proposed to study the behavior of metal crystals at finite temperature. By applying the present constitutive model, the stress-strain curves under uniaxial tension at different temperatures are calculated for the typical crystal A1, and the calculated results are compared with the experimental results. From the comparisons, it can be seen that the present theory has the capability to describe the thermo-elasto-plastic behavior of metal crystals at finite temperature through a concise and explicit calculation process.展开更多
The thermo elasto-plastic optimum design of ceramic-metal functionally graded materials (FGMs)was investigated in this paper. The inelastic properties were first evaluated using micromechanical approaches, then an ela...The thermo elasto-plastic optimum design of ceramic-metal functionally graded materials (FGMs)was investigated in this paper. The inelastic properties were first evaluated using micromechanical approaches, then an elasto-plastic finite element model was used to calculate the thermal stress in the material . The effects of micromechanical approaches, plasticity and graded interlayer thickness on the thermal stress relaxation characteristics and stress distributions were studied. The results show that: (1) the macro elas-to-plastic response given by the mean-field micromechanics and self-consistent micromechanics is nearly the same but the response given by the rule of mixture is different; (2)the thermo elasto-plastic behavior must be considered to realistically evaluate stress reduction, and the elasto-plastic optimum design can get helpful information to determine the graded interlayer thicknesses;and(3) to optimize the microstructure of the graded material achieves reductions in critical stress components and rational stress distributions.展开更多
文摘Coupled relations among temperature, phase transformation and stress have beendiscussed here in the present paper. Thermo-elasto-plastic constitutive equationsincluding creep and iterative finite element formulation during continuous casting withphase change have also been presented.
基金supported by the National Natural Science Foundation of China (Grants 11021262, 11172303, 11132011)National Basic Research Program of China through 2012CB937500
文摘In this study, the behavior of polycrystalline metals at different temperatures is investigated by a new thermo-elasto-plasticity constitutive theory. Based on solid mechanical and interatomic potential, the constitutive equa- tion is established using a new decomposition of the deformation gradient. For polycrystalline copper and magnesium, the stress-strain curves from 77 to 764 K (copper), and 77 to 870 K (magnesium) under quasi-static uniaxial loading are calculated, and then the calculated results are compared with the experiment results. Also, it is determined that the present model has the capacity to describe the decrease of the elastic modulus and yield stress with the increasing temperature, as well as the change of hardening behaviors of the polycrystalline metals. The calculation process is simple and explicit, which makes it easy to implement into the applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.11021262,11172303 and 11132011)National Basic Research Program of China(Grant No.2012CB937500)
文摘Based on the crystal plasticity theory and interatomic potential, in this paper a new thermo-elasto-plasticity constitutive model is proposed to study the behavior of metal crystals at finite temperature. By applying the present constitutive model, the stress-strain curves under uniaxial tension at different temperatures are calculated for the typical crystal A1, and the calculated results are compared with the experimental results. From the comparisons, it can be seen that the present theory has the capability to describe the thermo-elasto-plastic behavior of metal crystals at finite temperature through a concise and explicit calculation process.
基金This work was supported by the National Science Foundation
文摘The thermo elasto-plastic optimum design of ceramic-metal functionally graded materials (FGMs)was investigated in this paper. The inelastic properties were first evaluated using micromechanical approaches, then an elasto-plastic finite element model was used to calculate the thermal stress in the material . The effects of micromechanical approaches, plasticity and graded interlayer thickness on the thermal stress relaxation characteristics and stress distributions were studied. The results show that: (1) the macro elas-to-plastic response given by the mean-field micromechanics and self-consistent micromechanics is nearly the same but the response given by the rule of mixture is different; (2)the thermo elasto-plastic behavior must be considered to realistically evaluate stress reduction, and the elasto-plastic optimum design can get helpful information to determine the graded interlayer thicknesses;and(3) to optimize the microstructure of the graded material achieves reductions in critical stress components and rational stress distributions.